Whakaoti mō x
x = \frac{\sqrt{1065} + 5}{26} \approx 1.447474529
x=\frac{5-\sqrt{1065}}{26}\approx -1.062859144
Graph
Tohaina
Kua tāruatia ki te papatopenga
13x^{2}-5x-20=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 13\left(-20\right)}}{2\times 13}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 13 mō a, -5 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 13\left(-20\right)}}{2\times 13}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-52\left(-20\right)}}{2\times 13}
Whakareatia -4 ki te 13.
x=\frac{-\left(-5\right)±\sqrt{25+1040}}{2\times 13}
Whakareatia -52 ki te -20.
x=\frac{-\left(-5\right)±\sqrt{1065}}{2\times 13}
Tāpiri 25 ki te 1040.
x=\frac{5±\sqrt{1065}}{2\times 13}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{1065}}{26}
Whakareatia 2 ki te 13.
x=\frac{\sqrt{1065}+5}{26}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{1065}}{26} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{1065}.
x=\frac{5-\sqrt{1065}}{26}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{1065}}{26} ina he tango te ±. Tango \sqrt{1065} mai i 5.
x=\frac{\sqrt{1065}+5}{26} x=\frac{5-\sqrt{1065}}{26}
Kua oti te whārite te whakatau.
13x^{2}-5x-20=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
13x^{2}-5x-20-\left(-20\right)=-\left(-20\right)
Me tāpiri 20 ki ngā taha e rua o te whārite.
13x^{2}-5x=-\left(-20\right)
Mā te tango i te -20 i a ia ake anō ka toe ko te 0.
13x^{2}-5x=20
Tango -20 mai i 0.
\frac{13x^{2}-5x}{13}=\frac{20}{13}
Whakawehea ngā taha e rua ki te 13.
x^{2}-\frac{5}{13}x=\frac{20}{13}
Mā te whakawehe ki te 13 ka wetekia te whakareanga ki te 13.
x^{2}-\frac{5}{13}x+\left(-\frac{5}{26}\right)^{2}=\frac{20}{13}+\left(-\frac{5}{26}\right)^{2}
Whakawehea te -\frac{5}{13}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{26}. Nā, tāpiria te pūrua o te -\frac{5}{26} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{13}x+\frac{25}{676}=\frac{20}{13}+\frac{25}{676}
Pūruatia -\frac{5}{26} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{13}x+\frac{25}{676}=\frac{1065}{676}
Tāpiri \frac{20}{13} ki te \frac{25}{676} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{26}\right)^{2}=\frac{1065}{676}
Tauwehea x^{2}-\frac{5}{13}x+\frac{25}{676}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{26}\right)^{2}}=\sqrt{\frac{1065}{676}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{26}=\frac{\sqrt{1065}}{26} x-\frac{5}{26}=-\frac{\sqrt{1065}}{26}
Whakarūnātia.
x=\frac{\sqrt{1065}+5}{26} x=\frac{5-\sqrt{1065}}{26}
Me tāpiri \frac{5}{26} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}