Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

13x^{2}-5x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 13\times 4}}{2\times 13}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 13 mō a, -5 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 13\times 4}}{2\times 13}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-52\times 4}}{2\times 13}
Whakareatia -4 ki te 13.
x=\frac{-\left(-5\right)±\sqrt{25-208}}{2\times 13}
Whakareatia -52 ki te 4.
x=\frac{-\left(-5\right)±\sqrt{-183}}{2\times 13}
Tāpiri 25 ki te -208.
x=\frac{-\left(-5\right)±\sqrt{183}i}{2\times 13}
Tuhia te pūtakerua o te -183.
x=\frac{5±\sqrt{183}i}{2\times 13}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{183}i}{26}
Whakareatia 2 ki te 13.
x=\frac{5+\sqrt{183}i}{26}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{183}i}{26} ina he tāpiri te ±. Tāpiri 5 ki te i\sqrt{183}.
x=\frac{-\sqrt{183}i+5}{26}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{183}i}{26} ina he tango te ±. Tango i\sqrt{183} mai i 5.
x=\frac{5+\sqrt{183}i}{26} x=\frac{-\sqrt{183}i+5}{26}
Kua oti te whārite te whakatau.
13x^{2}-5x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
13x^{2}-5x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
13x^{2}-5x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{13x^{2}-5x}{13}=-\frac{4}{13}
Whakawehea ngā taha e rua ki te 13.
x^{2}-\frac{5}{13}x=-\frac{4}{13}
Mā te whakawehe ki te 13 ka wetekia te whakareanga ki te 13.
x^{2}-\frac{5}{13}x+\left(-\frac{5}{26}\right)^{2}=-\frac{4}{13}+\left(-\frac{5}{26}\right)^{2}
Whakawehea te -\frac{5}{13}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{26}. Nā, tāpiria te pūrua o te -\frac{5}{26} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{13}x+\frac{25}{676}=-\frac{4}{13}+\frac{25}{676}
Pūruatia -\frac{5}{26} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{13}x+\frac{25}{676}=-\frac{183}{676}
Tāpiri -\frac{4}{13} ki te \frac{25}{676} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{26}\right)^{2}=-\frac{183}{676}
Tauwehea x^{2}-\frac{5}{13}x+\frac{25}{676}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{26}\right)^{2}}=\sqrt{-\frac{183}{676}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{26}=\frac{\sqrt{183}i}{26} x-\frac{5}{26}=-\frac{\sqrt{183}i}{26}
Whakarūnātia.
x=\frac{5+\sqrt{183}i}{26} x=\frac{-\sqrt{183}i+5}{26}
Me tāpiri \frac{5}{26} ki ngā taha e rua o te whārite.