Whakaoti mō x (complex solution)
x=\frac{-5+\sqrt{183}i}{26}\approx -0.192307692+0.520298048i
x=\frac{-\sqrt{183}i-5}{26}\approx -0.192307692-0.520298048i
Graph
Tohaina
Kua tāruatia ki te papatopenga
13x^{2}+5x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\times 13\times 4}}{2\times 13}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 13 mō a, 5 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 13\times 4}}{2\times 13}
Pūrua 5.
x=\frac{-5±\sqrt{25-52\times 4}}{2\times 13}
Whakareatia -4 ki te 13.
x=\frac{-5±\sqrt{25-208}}{2\times 13}
Whakareatia -52 ki te 4.
x=\frac{-5±\sqrt{-183}}{2\times 13}
Tāpiri 25 ki te -208.
x=\frac{-5±\sqrt{183}i}{2\times 13}
Tuhia te pūtakerua o te -183.
x=\frac{-5±\sqrt{183}i}{26}
Whakareatia 2 ki te 13.
x=\frac{-5+\sqrt{183}i}{26}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{183}i}{26} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{183}.
x=\frac{-\sqrt{183}i-5}{26}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{183}i}{26} ina he tango te ±. Tango i\sqrt{183} mai i -5.
x=\frac{-5+\sqrt{183}i}{26} x=\frac{-\sqrt{183}i-5}{26}
Kua oti te whārite te whakatau.
13x^{2}+5x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
13x^{2}+5x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
13x^{2}+5x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{13x^{2}+5x}{13}=-\frac{4}{13}
Whakawehea ngā taha e rua ki te 13.
x^{2}+\frac{5}{13}x=-\frac{4}{13}
Mā te whakawehe ki te 13 ka wetekia te whakareanga ki te 13.
x^{2}+\frac{5}{13}x+\left(\frac{5}{26}\right)^{2}=-\frac{4}{13}+\left(\frac{5}{26}\right)^{2}
Whakawehea te \frac{5}{13}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{26}. Nā, tāpiria te pūrua o te \frac{5}{26} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{13}x+\frac{25}{676}=-\frac{4}{13}+\frac{25}{676}
Pūruatia \frac{5}{26} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{13}x+\frac{25}{676}=-\frac{183}{676}
Tāpiri -\frac{4}{13} ki te \frac{25}{676} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{26}\right)^{2}=-\frac{183}{676}
Tauwehea x^{2}+\frac{5}{13}x+\frac{25}{676}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{26}\right)^{2}}=\sqrt{-\frac{183}{676}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{26}=\frac{\sqrt{183}i}{26} x+\frac{5}{26}=-\frac{\sqrt{183}i}{26}
Whakarūnātia.
x=\frac{-5+\sqrt{183}i}{26} x=\frac{-\sqrt{183}i-5}{26}
Me tango \frac{5}{26} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}