Whakaoti mō a
a=3
Tohaina
Kua tāruatia ki te papatopenga
13-2a+2=6+a
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te a-1.
15-2a=6+a
Tāpirihia te 13 ki te 2, ka 15.
15-2a-a=6
Tangohia te a mai i ngā taha e rua.
15-3a=6
Pahekotia te -2a me -a, ka -3a.
-3a=6-15
Tangohia te 15 mai i ngā taha e rua.
-3a=-9
Tangohia te 15 i te 6, ka -9.
a=\frac{-9}{-3}
Whakawehea ngā taha e rua ki te -3.
a=3
Whakawehea te -9 ki te -3, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}