Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{13\times 5+3}{5}}{\frac{6}{5}}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Whakawehea te 3 ki te 3, kia riro ko 1.
\frac{\left(13\times 5+3\right)\times 5}{5\times 6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Whakawehe \frac{13\times 5+3}{5} ki te \frac{6}{5} mā te whakarea \frac{13\times 5+3}{5} ki te tau huripoki o \frac{6}{5}.
\frac{3+5\times 13}{6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{3+65}{6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Whakareatia te 5 ki te 13, ka 65.
\frac{68}{6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Tāpirihia te 3 ki te 65, ka 68.
\frac{68+3}{6}=\frac{1}{\frac{2}{6}}
Tā te mea he rite te tauraro o \frac{68}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{71}{6}=\frac{1}{\frac{2}{6}}
Tāpirihia te 68 ki te 3, ka 71.
\frac{71}{6}=\frac{6}{2}
Whakawehe 1 ki te \frac{2}{6} mā te whakarea 1 ki te tau huripoki o \frac{2}{6}.
\frac{71}{6}=3
Whakawehea te 6 ki te 2, kia riro ko 3.
\frac{71}{6}=\frac{18}{6}
Me tahuri te 3 ki te hautau \frac{18}{6}.
\text{false}
Whakatauritea te \frac{71}{6} me te \frac{18}{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}