Aromātai
\frac{15}{8}=1.875
Tauwehe
\frac{3 \cdot 5}{2 ^ {3}} = 1\frac{7}{8} = 1.875
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
13 \div 1 \frac { 7 } { 15 } \times \frac { 11 } { 52 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{13\times 15}{1\times 15+7}\times \frac{11}{52}
Whakawehe 13 ki te \frac{1\times 15+7}{15} mā te whakarea 13 ki te tau huripoki o \frac{1\times 15+7}{15}.
\frac{195}{1\times 15+7}\times \frac{11}{52}
Whakareatia te 13 ki te 15, ka 195.
\frac{195}{15+7}\times \frac{11}{52}
Whakareatia te 1 ki te 15, ka 15.
\frac{195}{22}\times \frac{11}{52}
Tāpirihia te 15 ki te 7, ka 22.
\frac{195\times 11}{22\times 52}
Me whakarea te \frac{195}{22} ki te \frac{11}{52} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2145}{1144}
Mahia ngā whakarea i roto i te hautanga \frac{195\times 11}{22\times 52}.
\frac{15}{8}
Whakahekea te hautanga \frac{2145}{1144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 143.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}