Whakaoti mō x
x = \frac{25}{6} = 4\frac{1}{6} \approx 4.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{12x}{25}\times 15+44=74
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{12x\times 15}{25}+44=74
Tuhia te \frac{12x}{25}\times 15 hei hautanga kotahi.
\frac{180x}{25}+44=74
Whakareatia te 12 ki te 15, ka 180.
\frac{36}{5}x+44=74
Whakawehea te 180x ki te 25, kia riro ko \frac{36}{5}x.
\frac{36}{5}x=74-44
Tangohia te 44 mai i ngā taha e rua.
\frac{36}{5}x=30
Tangohia te 44 i te 74, ka 30.
x=30\times \frac{5}{36}
Me whakarea ngā taha e rua ki te \frac{5}{36}, te tau utu o \frac{36}{5}.
x=\frac{30\times 5}{36}
Tuhia te 30\times \frac{5}{36} hei hautanga kotahi.
x=\frac{150}{36}
Whakareatia te 30 ki te 5, ka 150.
x=\frac{25}{6}
Whakahekea te hautanga \frac{150}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}