Whakaoti mō x
x=2\sqrt{359}-36\approx 1.894590643
x=-2\sqrt{359}-36\approx -73.894590643
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}-72x+1280=1140
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-x^{2}-72x+1280-1140=1140-1140
Me tango 1140 mai i ngā taha e rua o te whārite.
-x^{2}-72x+1280-1140=0
Mā te tango i te 1140 i a ia ake anō ka toe ko te 0.
-x^{2}-72x+140=0
Tango 1140 mai i 1280.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\left(-1\right)\times 140}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -72 mō b, me 140 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±\sqrt{5184-4\left(-1\right)\times 140}}{2\left(-1\right)}
Pūrua -72.
x=\frac{-\left(-72\right)±\sqrt{5184+4\times 140}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-72\right)±\sqrt{5184+560}}{2\left(-1\right)}
Whakareatia 4 ki te 140.
x=\frac{-\left(-72\right)±\sqrt{5744}}{2\left(-1\right)}
Tāpiri 5184 ki te 560.
x=\frac{-\left(-72\right)±4\sqrt{359}}{2\left(-1\right)}
Tuhia te pūtakerua o te 5744.
x=\frac{72±4\sqrt{359}}{2\left(-1\right)}
Ko te tauaro o -72 ko 72.
x=\frac{72±4\sqrt{359}}{-2}
Whakareatia 2 ki te -1.
x=\frac{4\sqrt{359}+72}{-2}
Nā, me whakaoti te whārite x=\frac{72±4\sqrt{359}}{-2} ina he tāpiri te ±. Tāpiri 72 ki te 4\sqrt{359}.
x=-2\sqrt{359}-36
Whakawehe 72+4\sqrt{359} ki te -2.
x=\frac{72-4\sqrt{359}}{-2}
Nā, me whakaoti te whārite x=\frac{72±4\sqrt{359}}{-2} ina he tango te ±. Tango 4\sqrt{359} mai i 72.
x=2\sqrt{359}-36
Whakawehe 72-4\sqrt{359} ki te -2.
x=-2\sqrt{359}-36 x=2\sqrt{359}-36
Kua oti te whārite te whakatau.
-x^{2}-72x+1280=1140
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-72x+1280-1280=1140-1280
Me tango 1280 mai i ngā taha e rua o te whārite.
-x^{2}-72x=1140-1280
Mā te tango i te 1280 i a ia ake anō ka toe ko te 0.
-x^{2}-72x=-140
Tango 1280 mai i 1140.
\frac{-x^{2}-72x}{-1}=-\frac{140}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{72}{-1}\right)x=-\frac{140}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+72x=-\frac{140}{-1}
Whakawehe -72 ki te -1.
x^{2}+72x=140
Whakawehe -140 ki te -1.
x^{2}+72x+36^{2}=140+36^{2}
Whakawehea te 72, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 36. Nā, tāpiria te pūrua o te 36 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+72x+1296=140+1296
Pūrua 36.
x^{2}+72x+1296=1436
Tāpiri 140 ki te 1296.
\left(x+36\right)^{2}=1436
Tauwehea x^{2}+72x+1296. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+36\right)^{2}}=\sqrt{1436}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+36=2\sqrt{359} x+36=-2\sqrt{359}
Whakarūnātia.
x=2\sqrt{359}-36 x=-2\sqrt{359}-36
Me tango 36 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}