Whakaoti mō x
x=\frac{1}{4}=0.25
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
128\left(1+x\right)^{2}=200
Whakareatia te 1+x ki te 1+x, ka \left(1+x\right)^{2}.
128\left(1+2x+x^{2}\right)=200
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
128+256x+128x^{2}=200
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te 1+2x+x^{2}.
128+256x+128x^{2}-200=0
Tangohia te 200 mai i ngā taha e rua.
-72+256x+128x^{2}=0
Tangohia te 200 i te 128, ka -72.
128x^{2}+256x-72=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-256±\sqrt{256^{2}-4\times 128\left(-72\right)}}{2\times 128}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 128 mō a, 256 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-256±\sqrt{65536-4\times 128\left(-72\right)}}{2\times 128}
Pūrua 256.
x=\frac{-256±\sqrt{65536-512\left(-72\right)}}{2\times 128}
Whakareatia -4 ki te 128.
x=\frac{-256±\sqrt{65536+36864}}{2\times 128}
Whakareatia -512 ki te -72.
x=\frac{-256±\sqrt{102400}}{2\times 128}
Tāpiri 65536 ki te 36864.
x=\frac{-256±320}{2\times 128}
Tuhia te pūtakerua o te 102400.
x=\frac{-256±320}{256}
Whakareatia 2 ki te 128.
x=\frac{64}{256}
Nā, me whakaoti te whārite x=\frac{-256±320}{256} ina he tāpiri te ±. Tāpiri -256 ki te 320.
x=\frac{1}{4}
Whakahekea te hautanga \frac{64}{256} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 64.
x=-\frac{576}{256}
Nā, me whakaoti te whārite x=\frac{-256±320}{256} ina he tango te ±. Tango 320 mai i -256.
x=-\frac{9}{4}
Whakahekea te hautanga \frac{-576}{256} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 64.
x=\frac{1}{4} x=-\frac{9}{4}
Kua oti te whārite te whakatau.
128\left(1+x\right)^{2}=200
Whakareatia te 1+x ki te 1+x, ka \left(1+x\right)^{2}.
128\left(1+2x+x^{2}\right)=200
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
128+256x+128x^{2}=200
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te 1+2x+x^{2}.
256x+128x^{2}=200-128
Tangohia te 128 mai i ngā taha e rua.
256x+128x^{2}=72
Tangohia te 128 i te 200, ka 72.
128x^{2}+256x=72
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{128x^{2}+256x}{128}=\frac{72}{128}
Whakawehea ngā taha e rua ki te 128.
x^{2}+\frac{256}{128}x=\frac{72}{128}
Mā te whakawehe ki te 128 ka wetekia te whakareanga ki te 128.
x^{2}+2x=\frac{72}{128}
Whakawehe 256 ki te 128.
x^{2}+2x=\frac{9}{16}
Whakahekea te hautanga \frac{72}{128} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x^{2}+2x+1^{2}=\frac{9}{16}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=\frac{9}{16}+1
Pūrua 1.
x^{2}+2x+1=\frac{25}{16}
Tāpiri \frac{9}{16} ki te 1.
\left(x+1\right)^{2}=\frac{25}{16}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{5}{4} x+1=-\frac{5}{4}
Whakarūnātia.
x=\frac{1}{4} x=-\frac{9}{4}
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}