Whakaoti mō x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
128+128x+128+128\left(x+1\right)^{2}=608
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te x+1.
256+128x+128\left(x+1\right)^{2}=608
Tāpirihia te 128 ki te 128, ka 256.
256+128x+128\left(x^{2}+2x+1\right)=608
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
256+128x+128x^{2}+256x+128=608
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te x^{2}+2x+1.
256+384x+128x^{2}+128=608
Pahekotia te 128x me 256x, ka 384x.
384+384x+128x^{2}=608
Tāpirihia te 256 ki te 128, ka 384.
384+384x+128x^{2}-608=0
Tangohia te 608 mai i ngā taha e rua.
-224+384x+128x^{2}=0
Tangohia te 608 i te 384, ka -224.
-7+12x+4x^{2}=0
Whakawehea ngā taha e rua ki te 32.
4x^{2}+12x-7=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=12 ab=4\left(-7\right)=-28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,28 -2,14 -4,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
-1+28=27 -2+14=12 -4+7=3
Tātaihia te tapeke mō ia takirua.
a=-2 b=14
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(4x^{2}-2x\right)+\left(14x-7\right)
Tuhia anō te 4x^{2}+12x-7 hei \left(4x^{2}-2x\right)+\left(14x-7\right).
2x\left(2x-1\right)+7\left(2x-1\right)
Tauwehea te 2x i te tuatahi me te 7 i te rōpū tuarua.
\left(2x-1\right)\left(2x+7\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=-\frac{7}{2}
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te 2x+7=0.
128+128x+128+128\left(x+1\right)^{2}=608
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te x+1.
256+128x+128\left(x+1\right)^{2}=608
Tāpirihia te 128 ki te 128, ka 256.
256+128x+128\left(x^{2}+2x+1\right)=608
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
256+128x+128x^{2}+256x+128=608
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te x^{2}+2x+1.
256+384x+128x^{2}+128=608
Pahekotia te 128x me 256x, ka 384x.
384+384x+128x^{2}=608
Tāpirihia te 256 ki te 128, ka 384.
384+384x+128x^{2}-608=0
Tangohia te 608 mai i ngā taha e rua.
-224+384x+128x^{2}=0
Tangohia te 608 i te 384, ka -224.
128x^{2}+384x-224=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-384±\sqrt{384^{2}-4\times 128\left(-224\right)}}{2\times 128}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 128 mō a, 384 mō b, me -224 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-384±\sqrt{147456-4\times 128\left(-224\right)}}{2\times 128}
Pūrua 384.
x=\frac{-384±\sqrt{147456-512\left(-224\right)}}{2\times 128}
Whakareatia -4 ki te 128.
x=\frac{-384±\sqrt{147456+114688}}{2\times 128}
Whakareatia -512 ki te -224.
x=\frac{-384±\sqrt{262144}}{2\times 128}
Tāpiri 147456 ki te 114688.
x=\frac{-384±512}{2\times 128}
Tuhia te pūtakerua o te 262144.
x=\frac{-384±512}{256}
Whakareatia 2 ki te 128.
x=\frac{128}{256}
Nā, me whakaoti te whārite x=\frac{-384±512}{256} ina he tāpiri te ±. Tāpiri -384 ki te 512.
x=\frac{1}{2}
Whakahekea te hautanga \frac{128}{256} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 128.
x=-\frac{896}{256}
Nā, me whakaoti te whārite x=\frac{-384±512}{256} ina he tango te ±. Tango 512 mai i -384.
x=-\frac{7}{2}
Whakahekea te hautanga \frac{-896}{256} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 128.
x=\frac{1}{2} x=-\frac{7}{2}
Kua oti te whārite te whakatau.
128+128x+128+128\left(x+1\right)^{2}=608
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te x+1.
256+128x+128\left(x+1\right)^{2}=608
Tāpirihia te 128 ki te 128, ka 256.
256+128x+128\left(x^{2}+2x+1\right)=608
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
256+128x+128x^{2}+256x+128=608
Whakamahia te āhuatanga tohatoha hei whakarea te 128 ki te x^{2}+2x+1.
256+384x+128x^{2}+128=608
Pahekotia te 128x me 256x, ka 384x.
384+384x+128x^{2}=608
Tāpirihia te 256 ki te 128, ka 384.
384x+128x^{2}=608-384
Tangohia te 384 mai i ngā taha e rua.
384x+128x^{2}=224
Tangohia te 384 i te 608, ka 224.
128x^{2}+384x=224
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{128x^{2}+384x}{128}=\frac{224}{128}
Whakawehea ngā taha e rua ki te 128.
x^{2}+\frac{384}{128}x=\frac{224}{128}
Mā te whakawehe ki te 128 ka wetekia te whakareanga ki te 128.
x^{2}+3x=\frac{224}{128}
Whakawehe 384 ki te 128.
x^{2}+3x=\frac{7}{4}
Whakahekea te hautanga \frac{224}{128} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 32.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{7+9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=4
Tāpiri \frac{7}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{2}\right)^{2}=4
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=2 x+\frac{3}{2}=-2
Whakarūnātia.
x=\frac{1}{2} x=-\frac{7}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}