Aromātai
\frac{236}{3}\approx 78.666666667
Tauwehe
\frac{2 ^ {2} \cdot 59}{3} = 78\frac{2}{3} = 78.66666666666667
Tohaina
Kua tāruatia ki te papatopenga
127-\left(6+\frac{42\times 6+2}{6}\right)
Whakawehea te 30 ki te 5, kia riro ko 6.
127-\left(6+\frac{252+2}{6}\right)
Whakareatia te 42 ki te 6, ka 252.
127-\left(6+\frac{254}{6}\right)
Tāpirihia te 252 ki te 2, ka 254.
127-\left(6+\frac{127}{3}\right)
Whakahekea te hautanga \frac{254}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
127-\left(\frac{18}{3}+\frac{127}{3}\right)
Me tahuri te 6 ki te hautau \frac{18}{3}.
127-\frac{18+127}{3}
Tā te mea he rite te tauraro o \frac{18}{3} me \frac{127}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
127-\frac{145}{3}
Tāpirihia te 18 ki te 127, ka 145.
\frac{381}{3}-\frac{145}{3}
Me tahuri te 127 ki te hautau \frac{381}{3}.
\frac{381-145}{3}
Tā te mea he rite te tauraro o \frac{381}{3} me \frac{145}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{236}{3}
Tangohia te 145 i te 381, ka 236.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}