Whakaoti mō x (complex solution)
x=\frac{39+4\sqrt{11194}i}{25}\approx 1.56+16.92827221i
x=\frac{-4\sqrt{11194}i+39}{25}\approx 1.56-16.92827221i
Graph
Tohaina
Kua tāruatia ki te papatopenga
125x^{2}-390x+36125=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-390\right)±\sqrt{\left(-390\right)^{2}-4\times 125\times 36125}}{2\times 125}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 125 mō a, -390 mō b, me 36125 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-390\right)±\sqrt{152100-4\times 125\times 36125}}{2\times 125}
Pūrua -390.
x=\frac{-\left(-390\right)±\sqrt{152100-500\times 36125}}{2\times 125}
Whakareatia -4 ki te 125.
x=\frac{-\left(-390\right)±\sqrt{152100-18062500}}{2\times 125}
Whakareatia -500 ki te 36125.
x=\frac{-\left(-390\right)±\sqrt{-17910400}}{2\times 125}
Tāpiri 152100 ki te -18062500.
x=\frac{-\left(-390\right)±40\sqrt{11194}i}{2\times 125}
Tuhia te pūtakerua o te -17910400.
x=\frac{390±40\sqrt{11194}i}{2\times 125}
Ko te tauaro o -390 ko 390.
x=\frac{390±40\sqrt{11194}i}{250}
Whakareatia 2 ki te 125.
x=\frac{390+40\sqrt{11194}i}{250}
Nā, me whakaoti te whārite x=\frac{390±40\sqrt{11194}i}{250} ina he tāpiri te ±. Tāpiri 390 ki te 40i\sqrt{11194}.
x=\frac{39+4\sqrt{11194}i}{25}
Whakawehe 390+40i\sqrt{11194} ki te 250.
x=\frac{-40\sqrt{11194}i+390}{250}
Nā, me whakaoti te whārite x=\frac{390±40\sqrt{11194}i}{250} ina he tango te ±. Tango 40i\sqrt{11194} mai i 390.
x=\frac{-4\sqrt{11194}i+39}{25}
Whakawehe 390-40i\sqrt{11194} ki te 250.
x=\frac{39+4\sqrt{11194}i}{25} x=\frac{-4\sqrt{11194}i+39}{25}
Kua oti te whārite te whakatau.
125x^{2}-390x+36125=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
125x^{2}-390x+36125-36125=-36125
Me tango 36125 mai i ngā taha e rua o te whārite.
125x^{2}-390x=-36125
Mā te tango i te 36125 i a ia ake anō ka toe ko te 0.
\frac{125x^{2}-390x}{125}=-\frac{36125}{125}
Whakawehea ngā taha e rua ki te 125.
x^{2}+\left(-\frac{390}{125}\right)x=-\frac{36125}{125}
Mā te whakawehe ki te 125 ka wetekia te whakareanga ki te 125.
x^{2}-\frac{78}{25}x=-\frac{36125}{125}
Whakahekea te hautanga \frac{-390}{125} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{78}{25}x=-289
Whakawehe -36125 ki te 125.
x^{2}-\frac{78}{25}x+\left(-\frac{39}{25}\right)^{2}=-289+\left(-\frac{39}{25}\right)^{2}
Whakawehea te -\frac{78}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{39}{25}. Nā, tāpiria te pūrua o te -\frac{39}{25} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=-289+\frac{1521}{625}
Pūruatia -\frac{39}{25} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=-\frac{179104}{625}
Tāpiri -289 ki te \frac{1521}{625}.
\left(x-\frac{39}{25}\right)^{2}=-\frac{179104}{625}
Tauwehea x^{2}-\frac{78}{25}x+\frac{1521}{625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{25}\right)^{2}}=\sqrt{-\frac{179104}{625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{39}{25}=\frac{4\sqrt{11194}i}{25} x-\frac{39}{25}=-\frac{4\sqrt{11194}i}{25}
Whakarūnātia.
x=\frac{39+4\sqrt{11194}i}{25} x=\frac{-4\sqrt{11194}i+39}{25}
Me tāpiri \frac{39}{25} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}