Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

125x^{2}-11x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 125\times 10}}{2\times 125}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 125 mō a, -11 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 125\times 10}}{2\times 125}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121-500\times 10}}{2\times 125}
Whakareatia -4 ki te 125.
x=\frac{-\left(-11\right)±\sqrt{121-5000}}{2\times 125}
Whakareatia -500 ki te 10.
x=\frac{-\left(-11\right)±\sqrt{-4879}}{2\times 125}
Tāpiri 121 ki te -5000.
x=\frac{-\left(-11\right)±\sqrt{4879}i}{2\times 125}
Tuhia te pūtakerua o te -4879.
x=\frac{11±\sqrt{4879}i}{2\times 125}
Ko te tauaro o -11 ko 11.
x=\frac{11±\sqrt{4879}i}{250}
Whakareatia 2 ki te 125.
x=\frac{11+\sqrt{4879}i}{250}
Nā, me whakaoti te whārite x=\frac{11±\sqrt{4879}i}{250} ina he tāpiri te ±. Tāpiri 11 ki te i\sqrt{4879}.
x=\frac{-\sqrt{4879}i+11}{250}
Nā, me whakaoti te whārite x=\frac{11±\sqrt{4879}i}{250} ina he tango te ±. Tango i\sqrt{4879} mai i 11.
x=\frac{11+\sqrt{4879}i}{250} x=\frac{-\sqrt{4879}i+11}{250}
Kua oti te whārite te whakatau.
125x^{2}-11x+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
125x^{2}-11x+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
125x^{2}-11x=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
\frac{125x^{2}-11x}{125}=-\frac{10}{125}
Whakawehea ngā taha e rua ki te 125.
x^{2}-\frac{11}{125}x=-\frac{10}{125}
Mā te whakawehe ki te 125 ka wetekia te whakareanga ki te 125.
x^{2}-\frac{11}{125}x=-\frac{2}{25}
Whakahekea te hautanga \frac{-10}{125} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{11}{125}x+\left(-\frac{11}{250}\right)^{2}=-\frac{2}{25}+\left(-\frac{11}{250}\right)^{2}
Whakawehea te -\frac{11}{125}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{250}. Nā, tāpiria te pūrua o te -\frac{11}{250} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{125}x+\frac{121}{62500}=-\frac{2}{25}+\frac{121}{62500}
Pūruatia -\frac{11}{250} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{125}x+\frac{121}{62500}=-\frac{4879}{62500}
Tāpiri -\frac{2}{25} ki te \frac{121}{62500} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{250}\right)^{2}=-\frac{4879}{62500}
Tauwehea x^{2}-\frac{11}{125}x+\frac{121}{62500}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{250}\right)^{2}}=\sqrt{-\frac{4879}{62500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{250}=\frac{\sqrt{4879}i}{250} x-\frac{11}{250}=-\frac{\sqrt{4879}i}{250}
Whakarūnātia.
x=\frac{11+\sqrt{4879}i}{250} x=\frac{-\sqrt{4879}i+11}{250}
Me tāpiri \frac{11}{250} ki ngā taha e rua o te whārite.