Whakaoti mō x
x=\frac{\sqrt{1581}+9}{125}\approx 0.390094326
x=\frac{9-\sqrt{1581}}{125}\approx -0.246094326
Graph
Tohaina
Kua tāruatia ki te papatopenga
125x^{2}+x-12-19x=0
Tangohia te 19x mai i ngā taha e rua.
125x^{2}-18x-12=0
Pahekotia te x me -19x, ka -18x.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 125\left(-12\right)}}{2\times 125}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 125 mō a, -18 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 125\left(-12\right)}}{2\times 125}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-500\left(-12\right)}}{2\times 125}
Whakareatia -4 ki te 125.
x=\frac{-\left(-18\right)±\sqrt{324+6000}}{2\times 125}
Whakareatia -500 ki te -12.
x=\frac{-\left(-18\right)±\sqrt{6324}}{2\times 125}
Tāpiri 324 ki te 6000.
x=\frac{-\left(-18\right)±2\sqrt{1581}}{2\times 125}
Tuhia te pūtakerua o te 6324.
x=\frac{18±2\sqrt{1581}}{2\times 125}
Ko te tauaro o -18 ko 18.
x=\frac{18±2\sqrt{1581}}{250}
Whakareatia 2 ki te 125.
x=\frac{2\sqrt{1581}+18}{250}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{1581}}{250} ina he tāpiri te ±. Tāpiri 18 ki te 2\sqrt{1581}.
x=\frac{\sqrt{1581}+9}{125}
Whakawehe 18+2\sqrt{1581} ki te 250.
x=\frac{18-2\sqrt{1581}}{250}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{1581}}{250} ina he tango te ±. Tango 2\sqrt{1581} mai i 18.
x=\frac{9-\sqrt{1581}}{125}
Whakawehe 18-2\sqrt{1581} ki te 250.
x=\frac{\sqrt{1581}+9}{125} x=\frac{9-\sqrt{1581}}{125}
Kua oti te whārite te whakatau.
125x^{2}+x-12-19x=0
Tangohia te 19x mai i ngā taha e rua.
125x^{2}-18x-12=0
Pahekotia te x me -19x, ka -18x.
125x^{2}-18x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{125x^{2}-18x}{125}=\frac{12}{125}
Whakawehea ngā taha e rua ki te 125.
x^{2}-\frac{18}{125}x=\frac{12}{125}
Mā te whakawehe ki te 125 ka wetekia te whakareanga ki te 125.
x^{2}-\frac{18}{125}x+\left(-\frac{9}{125}\right)^{2}=\frac{12}{125}+\left(-\frac{9}{125}\right)^{2}
Whakawehea te -\frac{18}{125}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{125}. Nā, tāpiria te pūrua o te -\frac{9}{125} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{18}{125}x+\frac{81}{15625}=\frac{12}{125}+\frac{81}{15625}
Pūruatia -\frac{9}{125} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{18}{125}x+\frac{81}{15625}=\frac{1581}{15625}
Tāpiri \frac{12}{125} ki te \frac{81}{15625} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{125}\right)^{2}=\frac{1581}{15625}
Tauwehea x^{2}-\frac{18}{125}x+\frac{81}{15625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{125}\right)^{2}}=\sqrt{\frac{1581}{15625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{125}=\frac{\sqrt{1581}}{125} x-\frac{9}{125}=-\frac{\sqrt{1581}}{125}
Whakarūnātia.
x=\frac{\sqrt{1581}+9}{125} x=\frac{9-\sqrt{1581}}{125}
Me tāpiri \frac{9}{125} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}