Tauwehe
\frac{\left(15y-4u\right)\left(225y^{2}+60uy+16u^{2}\right)}{27}
Aromātai
-\frac{64u^{3}}{27}+125y^{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3375y^{3}-64u^{3}}{27}
Tauwehea te \frac{1}{27}.
\left(15y-4u\right)\left(225y^{2}+60uy+16u^{2}\right)
Whakaarohia te 3375y^{3}-64u^{3}. Tuhia anō te 3375y^{3}-64u^{3} hei \left(15y\right)^{3}-\left(4u\right)^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\frac{\left(15y-4u\right)\left(225y^{2}+60uy+16u^{2}\right)}{27}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}