Aromātai
20
Tauwehe
2^{2}\times 5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
125 \times 1 \frac { 1 } { 25 } \times \frac { 2 } { 13 }
Tohaina
Kua tāruatia ki te papatopenga
125\times \frac{25+1}{25}\times \frac{2}{13}
Whakareatia te 1 ki te 25, ka 25.
125\times \frac{26}{25}\times \frac{2}{13}
Tāpirihia te 25 ki te 1, ka 26.
\frac{125\times 26}{25}\times \frac{2}{13}
Tuhia te 125\times \frac{26}{25} hei hautanga kotahi.
\frac{3250}{25}\times \frac{2}{13}
Whakareatia te 125 ki te 26, ka 3250.
130\times \frac{2}{13}
Whakawehea te 3250 ki te 25, kia riro ko 130.
\frac{130\times 2}{13}
Tuhia te 130\times \frac{2}{13} hei hautanga kotahi.
\frac{260}{13}
Whakareatia te 130 ki te 2, ka 260.
20
Whakawehea te 260 ki te 13, kia riro ko 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}