Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

125=\frac{82.55\left(1+0.0165\right)^{t}}{1+0.0165-1}
Whakareatia te 5000 ki te 0.01651, ka 82.55.
125=\frac{82.55\times 1.0165^{t}}{1+0.0165-1}
Tāpirihia te 1 ki te 0.0165, ka 1.0165.
125=\frac{82.55\times 1.0165^{t}}{1.0165-1}
Tāpirihia te 1 ki te 0.0165, ka 1.0165.
125=\frac{82.55\times 1.0165^{t}}{0.0165}
Tangohia te 1 i te 1.0165, ka 0.0165.
125=\frac{165100}{33}\times 1.0165^{t}
Whakawehea te 82.55\times 1.0165^{t} ki te 0.0165, kia riro ko \frac{165100}{33}\times 1.0165^{t}.
\frac{165100}{33}\times 1.0165^{t}=125
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1.0165^{t}=\frac{165}{6604}
Whakawehea ngā taha e rua o te whārite ki te \frac{165100}{33}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\log(1.0165^{t})=\log(\frac{165}{6604})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
t\log(1.0165)=\log(\frac{165}{6604})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
t=\frac{\log(\frac{165}{6604})}{\log(1.0165)}
Whakawehea ngā taha e rua ki te \log(1.0165).
t=\log_{1.0165}\left(\frac{165}{6604}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).