124 \times 45 \% +35 \% =
Aromātai
\frac{1123}{20}=56.15
Tauwehe
\frac{1123}{2 ^ {2} \cdot 5} = 56\frac{3}{20} = 56.15
Tohaina
Kua tāruatia ki te papatopenga
124\times \frac{9}{20}+\frac{35}{100}
Whakahekea te hautanga \frac{45}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{124\times 9}{20}+\frac{35}{100}
Tuhia te 124\times \frac{9}{20} hei hautanga kotahi.
\frac{1116}{20}+\frac{35}{100}
Whakareatia te 124 ki te 9, ka 1116.
\frac{279}{5}+\frac{35}{100}
Whakahekea te hautanga \frac{1116}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{279}{5}+\frac{7}{20}
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1116}{20}+\frac{7}{20}
Ko te maha noa iti rawa atu o 5 me 20 ko 20. Me tahuri \frac{279}{5} me \frac{7}{20} ki te hautau me te tautūnga 20.
\frac{1116+7}{20}
Tā te mea he rite te tauraro o \frac{1116}{20} me \frac{7}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1123}{20}
Tāpirihia te 1116 ki te 7, ka 1123.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}