Aromātai
\frac{134014}{11}\approx 12183.090909091
Tauwehe
\frac{2 \cdot 37 \cdot 1811}{11} = 12183\frac{1}{11} = 12183.09090909091
Tohaina
Kua tāruatia ki te papatopenga
12265+\frac{432}{33}-95
Whakareatia te 6 ki te 72, ka 432.
12265+\frac{144}{11}-95
Whakahekea te hautanga \frac{432}{33} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{134915}{11}+\frac{144}{11}-95
Me tahuri te 12265 ki te hautau \frac{134915}{11}.
\frac{134915+144}{11}-95
Tā te mea he rite te tauraro o \frac{134915}{11} me \frac{144}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{135059}{11}-95
Tāpirihia te 134915 ki te 144, ka 135059.
\frac{135059}{11}-\frac{1045}{11}
Me tahuri te 95 ki te hautau \frac{1045}{11}.
\frac{135059-1045}{11}
Tā te mea he rite te tauraro o \frac{135059}{11} me \frac{1045}{11}, me tango rāua mā te tango i ō raua taurunga.
\frac{134014}{11}
Tangohia te 1045 i te 135059, ka 134014.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}