Tīpoka ki ngā ihirangi matua
Whakaoti mō h
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(11h-2\right)\left(11h+2\right)=0
Whakaarohia te 121h^{2}-4. Tuhia anō te 121h^{2}-4 hei \left(11h\right)^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
h=\frac{2}{11} h=-\frac{2}{11}
Hei kimi otinga whārite, me whakaoti te 11h-2=0 me te 11h+2=0.
121h^{2}=4
Me tāpiri te 4 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
h^{2}=\frac{4}{121}
Whakawehea ngā taha e rua ki te 121.
h=\frac{2}{11} h=-\frac{2}{11}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
121h^{2}-4=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
h=\frac{0±\sqrt{0^{2}-4\times 121\left(-4\right)}}{2\times 121}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 121 mō a, 0 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\times 121\left(-4\right)}}{2\times 121}
Pūrua 0.
h=\frac{0±\sqrt{-484\left(-4\right)}}{2\times 121}
Whakareatia -4 ki te 121.
h=\frac{0±\sqrt{1936}}{2\times 121}
Whakareatia -484 ki te -4.
h=\frac{0±44}{2\times 121}
Tuhia te pūtakerua o te 1936.
h=\frac{0±44}{242}
Whakareatia 2 ki te 121.
h=\frac{2}{11}
Nā, me whakaoti te whārite h=\frac{0±44}{242} ina he tāpiri te ±. Whakahekea te hautanga \frac{44}{242} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 22.
h=-\frac{2}{11}
Nā, me whakaoti te whārite h=\frac{0±44}{242} ina he tango te ±. Whakahekea te hautanga \frac{-44}{242} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 22.
h=\frac{2}{11} h=-\frac{2}{11}
Kua oti te whārite te whakatau.