Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

120x^{2}\left(-6\right)=6
Whakareatia te x ki te x, ka x^{2}.
-720x^{2}=6
Whakareatia te 120 ki te -6, ka -720.
x^{2}=\frac{6}{-720}
Whakawehea ngā taha e rua ki te -720.
x^{2}=-\frac{1}{120}
Whakahekea te hautanga \frac{6}{-720} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{\sqrt{30}i}{60} x=-\frac{\sqrt{30}i}{60}
Kua oti te whārite te whakatau.
120x^{2}\left(-6\right)=6
Whakareatia te x ki te x, ka x^{2}.
-720x^{2}=6
Whakareatia te 120 ki te -6, ka -720.
-720x^{2}-6=0
Tangohia te 6 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-720\right)\left(-6\right)}}{2\left(-720\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -720 mō a, 0 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-720\right)\left(-6\right)}}{2\left(-720\right)}
Pūrua 0.
x=\frac{0±\sqrt{2880\left(-6\right)}}{2\left(-720\right)}
Whakareatia -4 ki te -720.
x=\frac{0±\sqrt{-17280}}{2\left(-720\right)}
Whakareatia 2880 ki te -6.
x=\frac{0±24\sqrt{30}i}{2\left(-720\right)}
Tuhia te pūtakerua o te -17280.
x=\frac{0±24\sqrt{30}i}{-1440}
Whakareatia 2 ki te -720.
x=-\frac{\sqrt{30}i}{60}
Nā, me whakaoti te whārite x=\frac{0±24\sqrt{30}i}{-1440} ina he tāpiri te ±.
x=\frac{\sqrt{30}i}{60}
Nā, me whakaoti te whārite x=\frac{0±24\sqrt{30}i}{-1440} ina he tango te ±.
x=-\frac{\sqrt{30}i}{60} x=\frac{\sqrt{30}i}{60}
Kua oti te whārite te whakatau.