Whakaoti mō x
x = \frac{25000 \sqrt{23142}}{3857} \approx 986.031557196
x = -\frac{25000 \sqrt{23142}}{3857} \approx -986.031557196
Graph
Tohaina
Kua tāruatia ki te papatopenga
120000=123424\times \left(\frac{x}{1000}\right)^{2}
Whakareatia te 112 ki te 1102, ka 123424.
120000=123424\times \frac{x^{2}}{1000^{2}}
Kia whakarewa i te \frac{x}{1000} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
120000=\frac{123424x^{2}}{1000^{2}}
Tuhia te 123424\times \frac{x^{2}}{1000^{2}} hei hautanga kotahi.
120000=\frac{123424x^{2}}{1000000}
Tātaihia te 1000 mā te pū o 2, kia riro ko 1000000.
120000=\frac{3857}{31250}x^{2}
Whakawehea te 123424x^{2} ki te 1000000, kia riro ko \frac{3857}{31250}x^{2}.
\frac{3857}{31250}x^{2}=120000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=120000\times \frac{31250}{3857}
Me whakarea ngā taha e rua ki te \frac{31250}{3857}, te tau utu o \frac{3857}{31250}.
x^{2}=\frac{3750000000}{3857}
Whakareatia te 120000 ki te \frac{31250}{3857}, ka \frac{3750000000}{3857}.
x=\frac{25000\sqrt{23142}}{3857} x=-\frac{25000\sqrt{23142}}{3857}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
120000=123424\times \left(\frac{x}{1000}\right)^{2}
Whakareatia te 112 ki te 1102, ka 123424.
120000=123424\times \frac{x^{2}}{1000^{2}}
Kia whakarewa i te \frac{x}{1000} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
120000=\frac{123424x^{2}}{1000^{2}}
Tuhia te 123424\times \frac{x^{2}}{1000^{2}} hei hautanga kotahi.
120000=\frac{123424x^{2}}{1000000}
Tātaihia te 1000 mā te pū o 2, kia riro ko 1000000.
120000=\frac{3857}{31250}x^{2}
Whakawehea te 123424x^{2} ki te 1000000, kia riro ko \frac{3857}{31250}x^{2}.
\frac{3857}{31250}x^{2}=120000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{3857}{31250}x^{2}-120000=0
Tangohia te 120000 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3857}{31250}\left(-120000\right)}}{2\times \frac{3857}{31250}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{3857}{31250} mō a, 0 mō b, me -120000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{3857}{31250}\left(-120000\right)}}{2\times \frac{3857}{31250}}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{7714}{15625}\left(-120000\right)}}{2\times \frac{3857}{31250}}
Whakareatia -4 ki te \frac{3857}{31250}.
x=\frac{0±\sqrt{\frac{1481088}{25}}}{2\times \frac{3857}{31250}}
Whakareatia -\frac{7714}{15625} ki te -120000.
x=\frac{0±\frac{8\sqrt{23142}}{5}}{2\times \frac{3857}{31250}}
Tuhia te pūtakerua o te \frac{1481088}{25}.
x=\frac{0±\frac{8\sqrt{23142}}{5}}{\frac{3857}{15625}}
Whakareatia 2 ki te \frac{3857}{31250}.
x=\frac{25000\sqrt{23142}}{3857}
Nā, me whakaoti te whārite x=\frac{0±\frac{8\sqrt{23142}}{5}}{\frac{3857}{15625}} ina he tāpiri te ±.
x=-\frac{25000\sqrt{23142}}{3857}
Nā, me whakaoti te whārite x=\frac{0±\frac{8\sqrt{23142}}{5}}{\frac{3857}{15625}} ina he tango te ±.
x=\frac{25000\sqrt{23142}}{3857} x=-\frac{25000\sqrt{23142}}{3857}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}