Whakaoti mō x
x = \frac{250000 \sqrt{870}}{203} \approx 36324.830551115
x = -\frac{250000 \sqrt{870}}{203} \approx -36324.830551115
Graph
Tohaina
Kua tāruatia ki te papatopenga
120000=90.944\times \left(\frac{x}{1000}\right)^{2}
Whakareatia te 1.12 ki te 81.2, ka 90.944.
120000=90.944\times \frac{x^{2}}{1000^{2}}
Kia whakarewa i te \frac{x}{1000} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
120000=90.944\times \frac{x^{2}}{1000000}
Tātaihia te 1000 mā te pū o 2, kia riro ko 1000000.
90.944\times \frac{x^{2}}{1000000}=120000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{x^{2}}{1000000}=\frac{120000}{90.944}
Whakawehea ngā taha e rua ki te 90.944.
\frac{x^{2}}{1000000}=\frac{120000000}{90944}
Whakarohaina te \frac{120000}{90.944} mā te whakarea i te taurunga me te tauraro ki te 1000.
\frac{x^{2}}{1000000}=\frac{1875000}{1421}
Whakahekea te hautanga \frac{120000000}{90944} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 64.
x^{2}=\frac{1875000}{1421}\times 1000000
Me whakarea ngā taha e rua ki te 1000000.
x^{2}=\frac{1875000000000}{1421}
Whakareatia te \frac{1875000}{1421} ki te 1000000, ka \frac{1875000000000}{1421}.
x=\frac{250000\sqrt{870}}{203} x=-\frac{250000\sqrt{870}}{203}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
120000=90.944\times \left(\frac{x}{1000}\right)^{2}
Whakareatia te 1.12 ki te 81.2, ka 90.944.
120000=90.944\times \frac{x^{2}}{1000^{2}}
Kia whakarewa i te \frac{x}{1000} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
120000=90.944\times \frac{x^{2}}{1000000}
Tātaihia te 1000 mā te pū o 2, kia riro ko 1000000.
90.944\times \frac{x^{2}}{1000000}=120000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
90.944\times \frac{x^{2}}{1000000}-120000=0
Tangohia te 120000 mai i ngā taha e rua.
90.944x^{2}-120000000000=0
Whakareatia ngā taha e rua o te whārite ki te 1000000.
x=\frac{0±\sqrt{0^{2}-4\times 90.944\left(-120000000000\right)}}{2\times 90.944}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 90.944 mō a, 0 mō b, me -120000000000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 90.944\left(-120000000000\right)}}{2\times 90.944}
Pūrua 0.
x=\frac{0±\sqrt{-363.776\left(-120000000000\right)}}{2\times 90.944}
Whakareatia -4 ki te 90.944.
x=\frac{0±\sqrt{43653120000000}}{2\times 90.944}
Whakareatia -363.776 ki te -120000000000.
x=\frac{0±224000\sqrt{870}}{2\times 90.944}
Tuhia te pūtakerua o te 43653120000000.
x=\frac{0±224000\sqrt{870}}{181.888}
Whakareatia 2 ki te 90.944.
x=\frac{250000\sqrt{870}}{203}
Nā, me whakaoti te whārite x=\frac{0±224000\sqrt{870}}{181.888} ina he tāpiri te ±.
x=-\frac{250000\sqrt{870}}{203}
Nā, me whakaoti te whārite x=\frac{0±224000\sqrt{870}}{181.888} ina he tango te ±.
x=\frac{250000\sqrt{870}}{203} x=-\frac{250000\sqrt{870}}{203}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}