Whakaoti mō x
x = -\frac{230}{3} = -76\frac{2}{3} \approx -76.666666667
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+200x-2300=0
Whakawehea ngā taha e rua ki te 40.
a+b=200 ab=3\left(-2300\right)=-6900
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-2300. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6900 -2,3450 -3,2300 -4,1725 -5,1380 -6,1150 -10,690 -12,575 -15,460 -20,345 -23,300 -25,276 -30,230 -46,150 -50,138 -60,115 -69,100 -75,92
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6900.
-1+6900=6899 -2+3450=3448 -3+2300=2297 -4+1725=1721 -5+1380=1375 -6+1150=1144 -10+690=680 -12+575=563 -15+460=445 -20+345=325 -23+300=277 -25+276=251 -30+230=200 -46+150=104 -50+138=88 -60+115=55 -69+100=31 -75+92=17
Tātaihia te tapeke mō ia takirua.
a=-30 b=230
Ko te otinga te takirua ka hoatu i te tapeke 200.
\left(3x^{2}-30x\right)+\left(230x-2300\right)
Tuhia anō te 3x^{2}+200x-2300 hei \left(3x^{2}-30x\right)+\left(230x-2300\right).
3x\left(x-10\right)+230\left(x-10\right)
Tauwehea te 3x i te tuatahi me te 230 i te rōpū tuarua.
\left(x-10\right)\left(3x+230\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=-\frac{230}{3}
Hei kimi otinga whārite, me whakaoti te x-10=0 me te 3x+230=0.
120x^{2}+8000x-92000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8000±\sqrt{8000^{2}-4\times 120\left(-92000\right)}}{2\times 120}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 120 mō a, 8000 mō b, me -92000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8000±\sqrt{64000000-4\times 120\left(-92000\right)}}{2\times 120}
Pūrua 8000.
x=\frac{-8000±\sqrt{64000000-480\left(-92000\right)}}{2\times 120}
Whakareatia -4 ki te 120.
x=\frac{-8000±\sqrt{64000000+44160000}}{2\times 120}
Whakareatia -480 ki te -92000.
x=\frac{-8000±\sqrt{108160000}}{2\times 120}
Tāpiri 64000000 ki te 44160000.
x=\frac{-8000±10400}{2\times 120}
Tuhia te pūtakerua o te 108160000.
x=\frac{-8000±10400}{240}
Whakareatia 2 ki te 120.
x=\frac{2400}{240}
Nā, me whakaoti te whārite x=\frac{-8000±10400}{240} ina he tāpiri te ±. Tāpiri -8000 ki te 10400.
x=10
Whakawehe 2400 ki te 240.
x=-\frac{18400}{240}
Nā, me whakaoti te whārite x=\frac{-8000±10400}{240} ina he tango te ±. Tango 10400 mai i -8000.
x=-\frac{230}{3}
Whakahekea te hautanga \frac{-18400}{240} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 80.
x=10 x=-\frac{230}{3}
Kua oti te whārite te whakatau.
120x^{2}+8000x-92000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
120x^{2}+8000x-92000-\left(-92000\right)=-\left(-92000\right)
Me tāpiri 92000 ki ngā taha e rua o te whārite.
120x^{2}+8000x=-\left(-92000\right)
Mā te tango i te -92000 i a ia ake anō ka toe ko te 0.
120x^{2}+8000x=92000
Tango -92000 mai i 0.
\frac{120x^{2}+8000x}{120}=\frac{92000}{120}
Whakawehea ngā taha e rua ki te 120.
x^{2}+\frac{8000}{120}x=\frac{92000}{120}
Mā te whakawehe ki te 120 ka wetekia te whakareanga ki te 120.
x^{2}+\frac{200}{3}x=\frac{92000}{120}
Whakahekea te hautanga \frac{8000}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
x^{2}+\frac{200}{3}x=\frac{2300}{3}
Whakahekea te hautanga \frac{92000}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
x^{2}+\frac{200}{3}x+\left(\frac{100}{3}\right)^{2}=\frac{2300}{3}+\left(\frac{100}{3}\right)^{2}
Whakawehea te \frac{200}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{100}{3}. Nā, tāpiria te pūrua o te \frac{100}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{2300}{3}+\frac{10000}{9}
Pūruatia \frac{100}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{16900}{9}
Tāpiri \frac{2300}{3} ki te \frac{10000}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{100}{3}\right)^{2}=\frac{16900}{9}
Tauwehea x^{2}+\frac{200}{3}x+\frac{10000}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{100}{3}\right)^{2}}=\sqrt{\frac{16900}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{100}{3}=\frac{130}{3} x+\frac{100}{3}=-\frac{130}{3}
Whakarūnātia.
x=10 x=-\frac{230}{3}
Me tango \frac{100}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}