Whakaoti mō x
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
12-\left(2x^{2}+x\right)=3x-2x^{2}+7
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.
12-2x^{2}-x=3x-2x^{2}+7
Hei kimi i te tauaro o 2x^{2}+x, kimihia te tauaro o ia taurangi.
12-2x^{2}-x-3x=-2x^{2}+7
Tangohia te 3x mai i ngā taha e rua.
12-2x^{2}-4x=-2x^{2}+7
Pahekotia te -x me -3x, ka -4x.
12-2x^{2}-4x+2x^{2}=7
Me tāpiri te 2x^{2} ki ngā taha e rua.
12-4x=7
Pahekotia te -2x^{2} me 2x^{2}, ka 0.
-4x=7-12
Tangohia te 12 mai i ngā taha e rua.
-4x=-5
Tangohia te 12 i te 7, ka -5.
x=\frac{-5}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{5}{4}
Ka taea te hautanga \frac{-5}{-4} te whakamāmā ki te \frac{5}{4} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}