Whakaoti mō x
x\leq -\frac{44}{15}
Graph
Tohaina
Kua tāruatia ki te papatopenga
12\left(x+5\right)\leq \frac{4}{5}\times 31
Me whakarea ngā taha e rua ki te 31. I te mea he tōrunga te 31, kāore e huri te ahunga koreōrite.
12x+60\leq \frac{4}{5}\times 31
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x+5.
12x+60\leq \frac{4\times 31}{5}
Tuhia te \frac{4}{5}\times 31 hei hautanga kotahi.
12x+60\leq \frac{124}{5}
Whakareatia te 4 ki te 31, ka 124.
12x\leq \frac{124}{5}-60
Tangohia te 60 mai i ngā taha e rua.
12x\leq \frac{124}{5}-\frac{300}{5}
Me tahuri te 60 ki te hautau \frac{300}{5}.
12x\leq \frac{124-300}{5}
Tā te mea he rite te tauraro o \frac{124}{5} me \frac{300}{5}, me tango rāua mā te tango i ō raua taurunga.
12x\leq -\frac{176}{5}
Tangohia te 300 i te 124, ka -176.
x\leq \frac{-\frac{176}{5}}{12}
Whakawehea ngā taha e rua ki te 12. I te mea he tōrunga te 12, kāore e huri te ahunga koreōrite.
x\leq \frac{-176}{5\times 12}
Tuhia te \frac{-\frac{176}{5}}{12} hei hautanga kotahi.
x\leq \frac{-176}{60}
Whakareatia te 5 ki te 12, ka 60.
x\leq -\frac{44}{15}
Whakahekea te hautanga \frac{-176}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}