Whakaoti mō G
G=108000-3x
Whakaoti mō x
x=-\frac{G}{3}+36000
Graph
Tohaina
Kua tāruatia ki te papatopenga
24000+6x+2G=240000
Whakareatia ngā taha e rua o te whārite ki te 2.
6x+2G=240000-24000
Tangohia te 24000 mai i ngā taha e rua.
6x+2G=216000
Tangohia te 24000 i te 240000, ka 216000.
2G=216000-6x
Tangohia te 6x mai i ngā taha e rua.
\frac{2G}{2}=\frac{216000-6x}{2}
Whakawehea ngā taha e rua ki te 2.
G=\frac{216000-6x}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
G=108000-3x
Whakawehe 216000-6x ki te 2.
24000+6x+2G=240000
Whakareatia ngā taha e rua o te whārite ki te 2.
6x+2G=240000-24000
Tangohia te 24000 mai i ngā taha e rua.
6x+2G=216000
Tangohia te 24000 i te 240000, ka 216000.
6x=216000-2G
Tangohia te 2G mai i ngā taha e rua.
\frac{6x}{6}=\frac{216000-2G}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{216000-2G}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x=-\frac{G}{3}+36000
Whakawehe 216000-2G ki te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}