Aromātai
\frac{4\left(\sqrt{3}+9\right)}{3}\approx 14.309401077
Tauwehe
\frac{4 {(\sqrt{3} + 9)}}{3} = 14.309401076758503
Tohaina
Kua tāruatia ki te papatopenga
12+\frac{4\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
12+\frac{4\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12\times 3}{3}+\frac{4\sqrt{3}}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 12 ki te \frac{3}{3}.
\frac{12\times 3+4\sqrt{3}}{3}
Tā te mea he rite te tauraro o \frac{12\times 3}{3} me \frac{4\sqrt{3}}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36+4\sqrt{3}}{3}
Mahia ngā whakarea i roto o 12\times 3+4\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}