Whakaoti mō x
x=\frac{12y+9}{5}
Whakaoti mō y
y=\frac{5x}{12}-\frac{3}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
12y-5x+10=1
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-2.
-5x+10=1-12y
Tangohia te 12y mai i ngā taha e rua.
-5x=1-12y-10
Tangohia te 10 mai i ngā taha e rua.
-5x=-9-12y
Tangohia te 10 i te 1, ka -9.
-5x=-12y-9
He hanga arowhānui tō te whārite.
\frac{-5x}{-5}=\frac{-12y-9}{-5}
Whakawehea ngā taha e rua ki te -5.
x=\frac{-12y-9}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x=\frac{12y+9}{5}
Whakawehe -9-12y ki te -5.
12y-5x+10=1
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-2.
12y+10=1+5x
Me tāpiri te 5x ki ngā taha e rua.
12y=1+5x-10
Tangohia te 10 mai i ngā taha e rua.
12y=-9+5x
Tangohia te 10 i te 1, ka -9.
12y=5x-9
He hanga arowhānui tō te whārite.
\frac{12y}{12}=\frac{5x-9}{12}
Whakawehea ngā taha e rua ki te 12.
y=\frac{5x-9}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
y=\frac{5x}{12}-\frac{3}{4}
Whakawehe -9+5x ki te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}