Whakaoti mō x
x=10y+\frac{28}{3}
Whakaoti mō y
y=\frac{x}{10}-\frac{14}{15}
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x=84+120y+28
Me tāpiri te 28 ki ngā taha e rua.
12x=112+120y
Tāpirihia te 84 ki te 28, ka 112.
12x=120y+112
He hanga arowhānui tō te whārite.
\frac{12x}{12}=\frac{120y+112}{12}
Whakawehea ngā taha e rua ki te 12.
x=\frac{120y+112}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x=10y+\frac{28}{3}
Whakawehe 112+120y ki te 12.
84+120y=12x-28
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
120y=12x-28-84
Tangohia te 84 mai i ngā taha e rua.
120y=12x-112
Tangohia te 84 i te -28, ka -112.
\frac{120y}{120}=\frac{12x-112}{120}
Whakawehea ngā taha e rua ki te 120.
y=\frac{12x-112}{120}
Mā te whakawehe ki te 120 ka wetekia te whakareanga ki te 120.
y=\frac{x}{10}-\frac{14}{15}
Whakawehe 12x-112 ki te 120.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}