Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
12xx-6=6x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
12x^{2}-6=6x
Whakareatia te x ki te x, ka x^{2}.
12x^{2}-6-6x=0
Tangohia te 6x mai i ngā taha e rua.
2x^{2}-1-x=0
Whakawehea ngā taha e rua ki te 6.
2x^{2}-x-1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=2\left(-1\right)=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-2 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(2x^{2}-2x\right)+\left(x-1\right)
Tuhia anō te 2x^{2}-x-1 hei \left(2x^{2}-2x\right)+\left(x-1\right).
2x\left(x-1\right)+x-1
Whakatauwehea atu 2x i te 2x^{2}-2x.
\left(x-1\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 2x+1=0.
12xx-6=6x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
12x^{2}-6=6x
Whakareatia te x ki te x, ka x^{2}.
12x^{2}-6-6x=0
Tangohia te 6x mai i ngā taha e rua.
12x^{2}-6x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 12\left(-6\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, -6 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 12\left(-6\right)}}{2\times 12}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-48\left(-6\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-\left(-6\right)±\sqrt{36+288}}{2\times 12}
Whakareatia -48 ki te -6.
x=\frac{-\left(-6\right)±\sqrt{324}}{2\times 12}
Tāpiri 36 ki te 288.
x=\frac{-\left(-6\right)±18}{2\times 12}
Tuhia te pūtakerua o te 324.
x=\frac{6±18}{2\times 12}
Ko te tauaro o -6 ko 6.
x=\frac{6±18}{24}
Whakareatia 2 ki te 12.
x=\frac{24}{24}
Nā, me whakaoti te whārite x=\frac{6±18}{24} ina he tāpiri te ±. Tāpiri 6 ki te 18.
x=1
Whakawehe 24 ki te 24.
x=-\frac{12}{24}
Nā, me whakaoti te whārite x=\frac{6±18}{24} ina he tango te ±. Tango 18 mai i 6.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-12}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=1 x=-\frac{1}{2}
Kua oti te whārite te whakatau.
12xx-6=6x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
12x^{2}-6=6x
Whakareatia te x ki te x, ka x^{2}.
12x^{2}-6-6x=0
Tangohia te 6x mai i ngā taha e rua.
12x^{2}-6x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{12x^{2}-6x}{12}=\frac{6}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\left(-\frac{6}{12}\right)x=\frac{6}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}-\frac{1}{2}x=\frac{6}{12}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Tāpiri \frac{1}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Whakarūnātia.
x=1 x=-\frac{1}{2}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}