Whakaoti mō x
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x^{2}+12x=-3
Whakamahia te āhuatanga tohatoha hei whakarea te 12x ki te x+1.
12x^{2}+12x+3=0
Me tāpiri te 3 ki ngā taha e rua.
x=\frac{-12±\sqrt{12^{2}-4\times 12\times 3}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 12 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 12\times 3}}{2\times 12}
Pūrua 12.
x=\frac{-12±\sqrt{144-48\times 3}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-12±\sqrt{144-144}}{2\times 12}
Whakareatia -48 ki te 3.
x=\frac{-12±\sqrt{0}}{2\times 12}
Tāpiri 144 ki te -144.
x=-\frac{12}{2\times 12}
Tuhia te pūtakerua o te 0.
x=-\frac{12}{24}
Whakareatia 2 ki te 12.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-12}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
12x^{2}+12x=-3
Whakamahia te āhuatanga tohatoha hei whakarea te 12x ki te x+1.
\frac{12x^{2}+12x}{12}=-\frac{3}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{12}{12}x=-\frac{3}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+x=-\frac{3}{12}
Whakawehe 12 ki te 12.
x^{2}+x=-\frac{1}{4}
Whakahekea te hautanga \frac{-3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{-1+1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=0
Tāpiri -\frac{1}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{2}\right)^{2}=0
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=0 x+\frac{1}{2}=0
Whakarūnātia.
x=-\frac{1}{2} x=-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}