Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{3}+8x^{2}-x=1
Tangohia te x mai i ngā taha e rua.
12x^{3}+8x^{2}-x-1=0
Tangohia te 1 mai i ngā taha e rua.
±\frac{1}{12},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 12. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=\frac{1}{3}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
4x^{2}+4x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 12x^{3}+8x^{2}-x-1 ki te 3\left(x-\frac{1}{3}\right)=3x-1, kia riro ko 4x^{2}+4x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\times 1}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 4 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-4±0}{8}
Mahia ngā tātaitai.
x=-\frac{1}{2}
He ōrite ngā whakatau.
x=\frac{1}{3} x=-\frac{1}{2}
Rārangitia ngā otinga katoa i kitea.