Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x^{3}+8x^{2}-x=1
Tangohia te x mai i ngā taha e rua.
12x^{3}+8x^{2}-x-1=0
Tangohia te 1 mai i ngā taha e rua.
±\frac{1}{12},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 12. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=\frac{1}{3}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
4x^{2}+4x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 12x^{3}+8x^{2}-x-1 ki te 3\left(x-\frac{1}{3}\right)=3x-1, kia riro ko 4x^{2}+4x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\times 1}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 4 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-4±0}{8}
Mahia ngā tātaitai.
x=-\frac{1}{2}
He ōrite ngā whakatau.
x=\frac{1}{3} x=-\frac{1}{2}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}