Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{2}-x-6=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 12\left(-6\right)}}{2\times 12}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 12 mō te a, te -1 mō te b, me te -6 mō te c i te ture pūrua.
x=\frac{1±17}{24}
Mahia ngā tātaitai.
x=\frac{3}{4} x=-\frac{2}{3}
Whakaotia te whārite x=\frac{1±17}{24} ina he tōrunga te ±, ina he tōraro te ±.
12\left(x-\frac{3}{4}\right)\left(x+\frac{2}{3}\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{3}{4}<0 x+\frac{2}{3}<0
Kia tōrunga te otinga, me tōraro tahi te x-\frac{3}{4} me te x+\frac{2}{3}, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-\frac{3}{4} me te x+\frac{2}{3}.
x<-\frac{2}{3}
Te otinga e whakaea i ngā koreōrite e rua ko x<-\frac{2}{3}.
x+\frac{2}{3}>0 x-\frac{3}{4}>0
Whakaarohia te tauira ina he tōrunga tahi te x-\frac{3}{4} me te x+\frac{2}{3}.
x>\frac{3}{4}
Te otinga e whakaea i ngā koreōrite e rua ko x>\frac{3}{4}.
x<-\frac{2}{3}\text{; }x>\frac{3}{4}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.