Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{2}-7=0
Tangohia te 2 i te -5, ka -7.
12x^{2}=7
Me tāpiri te 7 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{7}{12}
Whakawehea ngā taha e rua ki te 12.
x=\frac{\sqrt{21}}{6} x=-\frac{\sqrt{21}}{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
12x^{2}-7=0
Tangohia te 2 i te -5, ka -7.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-7\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 0 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-7\right)}}{2\times 12}
Pūrua 0.
x=\frac{0±\sqrt{-48\left(-7\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{0±\sqrt{336}}{2\times 12}
Whakareatia -48 ki te -7.
x=\frac{0±4\sqrt{21}}{2\times 12}
Tuhia te pūtakerua o te 336.
x=\frac{0±4\sqrt{21}}{24}
Whakareatia 2 ki te 12.
x=\frac{\sqrt{21}}{6}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{21}}{24} ina he tāpiri te ±.
x=-\frac{\sqrt{21}}{6}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{21}}{24} ina he tango te ±.
x=\frac{\sqrt{21}}{6} x=-\frac{\sqrt{21}}{6}
Kua oti te whārite te whakatau.