Tauwehe
\left(2x-1\right)\left(6x+1\right)
Aromātai
\left(2x-1\right)\left(6x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-4 ab=12\left(-1\right)=-12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 12x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(12x^{2}-6x\right)+\left(2x-1\right)
Tuhia anō te 12x^{2}-4x-1 hei \left(12x^{2}-6x\right)+\left(2x-1\right).
6x\left(2x-1\right)+2x-1
Whakatauwehea atu 6x i te 12x^{2}-6x.
\left(2x-1\right)\left(6x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
12x^{2}-4x-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 12\left(-1\right)}}{2\times 12}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 12\left(-1\right)}}{2\times 12}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-48\left(-1\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 12}
Whakareatia -48 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 12}
Tāpiri 16 ki te 48.
x=\frac{-\left(-4\right)±8}{2\times 12}
Tuhia te pūtakerua o te 64.
x=\frac{4±8}{2\times 12}
Ko te tauaro o -4 ko 4.
x=\frac{4±8}{24}
Whakareatia 2 ki te 12.
x=\frac{12}{24}
Nā, me whakaoti te whārite x=\frac{4±8}{24} ina he tāpiri te ±. Tāpiri 4 ki te 8.
x=\frac{1}{2}
Whakahekea te hautanga \frac{12}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=-\frac{4}{24}
Nā, me whakaoti te whārite x=\frac{4±8}{24} ina he tango te ±. Tango 8 mai i 4.
x=-\frac{1}{6}
Whakahekea te hautanga \frac{-4}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
12x^{2}-4x-1=12\left(x-\frac{1}{2}\right)\left(x-\left(-\frac{1}{6}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{2} mō te x_{1} me te -\frac{1}{6} mō te x_{2}.
12x^{2}-4x-1=12\left(x-\frac{1}{2}\right)\left(x+\frac{1}{6}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
12x^{2}-4x-1=12\times \frac{2x-1}{2}\left(x+\frac{1}{6}\right)
Tango \frac{1}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12x^{2}-4x-1=12\times \frac{2x-1}{2}\times \frac{6x+1}{6}
Tāpiri \frac{1}{6} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12x^{2}-4x-1=12\times \frac{\left(2x-1\right)\left(6x+1\right)}{2\times 6}
Whakareatia \frac{2x-1}{2} ki te \frac{6x+1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12x^{2}-4x-1=12\times \frac{\left(2x-1\right)\left(6x+1\right)}{12}
Whakareatia 2 ki te 6.
12x^{2}-4x-1=\left(2x-1\right)\left(6x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te 12 me te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}