Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{2}-2x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 12\times 5}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, -2 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 12\times 5}}{2\times 12}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-48\times 5}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-\left(-2\right)±\sqrt{4-240}}{2\times 12}
Whakareatia -48 ki te 5.
x=\frac{-\left(-2\right)±\sqrt{-236}}{2\times 12}
Tāpiri 4 ki te -240.
x=\frac{-\left(-2\right)±2\sqrt{59}i}{2\times 12}
Tuhia te pūtakerua o te -236.
x=\frac{2±2\sqrt{59}i}{2\times 12}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{59}i}{24}
Whakareatia 2 ki te 12.
x=\frac{2+2\sqrt{59}i}{24}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{59}i}{24} ina he tāpiri te ±. Tāpiri 2 ki te 2i\sqrt{59}.
x=\frac{1+\sqrt{59}i}{12}
Whakawehe 2+2i\sqrt{59} ki te 24.
x=\frac{-2\sqrt{59}i+2}{24}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{59}i}{24} ina he tango te ±. Tango 2i\sqrt{59} mai i 2.
x=\frac{-\sqrt{59}i+1}{12}
Whakawehe 2-2i\sqrt{59} ki te 24.
x=\frac{1+\sqrt{59}i}{12} x=\frac{-\sqrt{59}i+1}{12}
Kua oti te whārite te whakatau.
12x^{2}-2x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
12x^{2}-2x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
12x^{2}-2x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{12x^{2}-2x}{12}=-\frac{5}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\left(-\frac{2}{12}\right)x=-\frac{5}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}-\frac{1}{6}x=-\frac{5}{12}
Whakahekea te hautanga \frac{-2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=-\frac{5}{12}+\left(-\frac{1}{12}\right)^{2}
Whakawehea te -\frac{1}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{12}. Nā, tāpiria te pūrua o te -\frac{1}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{6}x+\frac{1}{144}=-\frac{5}{12}+\frac{1}{144}
Pūruatia -\frac{1}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{6}x+\frac{1}{144}=-\frac{59}{144}
Tāpiri -\frac{5}{12} ki te \frac{1}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{12}\right)^{2}=-\frac{59}{144}
Tauwehea x^{2}-\frac{1}{6}x+\frac{1}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{-\frac{59}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{12}=\frac{\sqrt{59}i}{12} x-\frac{1}{12}=-\frac{\sqrt{59}i}{12}
Whakarūnātia.
x=\frac{1+\sqrt{59}i}{12} x=\frac{-\sqrt{59}i+1}{12}
Me tāpiri \frac{1}{12} ki ngā taha e rua o te whārite.