Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{2}-12x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 12\left(-6\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, -12 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 12\left(-6\right)}}{2\times 12}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-48\left(-6\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-\left(-12\right)±\sqrt{144+288}}{2\times 12}
Whakareatia -48 ki te -6.
x=\frac{-\left(-12\right)±\sqrt{432}}{2\times 12}
Tāpiri 144 ki te 288.
x=\frac{-\left(-12\right)±12\sqrt{3}}{2\times 12}
Tuhia te pūtakerua o te 432.
x=\frac{12±12\sqrt{3}}{2\times 12}
Ko te tauaro o -12 ko 12.
x=\frac{12±12\sqrt{3}}{24}
Whakareatia 2 ki te 12.
x=\frac{12\sqrt{3}+12}{24}
Nā, me whakaoti te whārite x=\frac{12±12\sqrt{3}}{24} ina he tāpiri te ±. Tāpiri 12 ki te 12\sqrt{3}.
x=\frac{\sqrt{3}+1}{2}
Whakawehe 12+12\sqrt{3} ki te 24.
x=\frac{12-12\sqrt{3}}{24}
Nā, me whakaoti te whārite x=\frac{12±12\sqrt{3}}{24} ina he tango te ±. Tango 12\sqrt{3} mai i 12.
x=\frac{1-\sqrt{3}}{2}
Whakawehe 12-12\sqrt{3} ki te 24.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
Kua oti te whārite te whakatau.
12x^{2}-12x-6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
12x^{2}-12x-6-\left(-6\right)=-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
12x^{2}-12x=-\left(-6\right)
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
12x^{2}-12x=6
Tango -6 mai i 0.
\frac{12x^{2}-12x}{12}=\frac{6}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\left(-\frac{12}{12}\right)x=\frac{6}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}-x=\frac{6}{12}
Whakawehe -12 ki te 12.
x^{2}-x=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{3}{4}
Tāpiri \frac{1}{2} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{3}}{2} x-\frac{1}{2}=-\frac{\sqrt{3}}{2}
Whakarūnātia.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.