Aromātai
-3
Tauwehe
-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(12x^{2}\right)^{1}\times \frac{1}{-4x^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
12^{1}\left(x^{2}\right)^{1}\times \frac{1}{-4}\times \frac{1}{x^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
12^{1}\times \frac{1}{-4}\left(x^{2}\right)^{1}\times \frac{1}{x^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
12^{1}\times \frac{1}{-4}x^{2}x^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
12^{1}\times \frac{1}{-4}x^{2}x^{-2}
Whakareatia 2 ki te -1.
12^{1}\times \frac{1}{-4}x^{2-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
12^{1}\times \frac{1}{-4}x^{0}
Tāpirihia ngā taupū 2 me -2.
12\times \frac{1}{-4}x^{0}
Hīkina te 12 ki te pū 1.
12\left(-\frac{1}{4}\right)x^{0}
Hīkina te -4 ki te pū -1.
-3x^{0}
Whakareatia 12 ki te -\frac{1}{4}.
-3
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{12^{1}x^{2}}{\left(-4\right)^{1}x^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{12^{1}x^{2-2}}{\left(-4\right)^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{12^{1}x^{0}}{\left(-4\right)^{1}}
Tango 2 mai i 2.
\frac{12^{1}}{\left(-4\right)^{1}}
Mō tētahi tau a mahue te 0, a^{0}=1.
-3
Whakawehe 12 ki te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}