Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+8x-3+4x+5
Pahekotia te 12x^{2} me -7x^{2}, ka 5x^{2}.
5x^{2}+12x-3+5
Pahekotia te 8x me 4x, ka 12x.
5x^{2}+12x+2
Tāpirihia te -3 ki te 5, ka 2.
factor(5x^{2}+8x-3+4x+5)
Pahekotia te 12x^{2} me -7x^{2}, ka 5x^{2}.
factor(5x^{2}+12x-3+5)
Pahekotia te 8x me 4x, ka 12x.
factor(5x^{2}+12x+2)
Tāpirihia te -3 ki te 5, ka 2.
5x^{2}+12x+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 5\times 2}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{144-4\times 5\times 2}}{2\times 5}
Pūrua 12.
x=\frac{-12±\sqrt{144-20\times 2}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-12±\sqrt{144-40}}{2\times 5}
Whakareatia -20 ki te 2.
x=\frac{-12±\sqrt{104}}{2\times 5}
Tāpiri 144 ki te -40.
x=\frac{-12±2\sqrt{26}}{2\times 5}
Tuhia te pūtakerua o te 104.
x=\frac{-12±2\sqrt{26}}{10}
Whakareatia 2 ki te 5.
x=\frac{2\sqrt{26}-12}{10}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{26}}{10} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{26}.
x=\frac{\sqrt{26}-6}{5}
Whakawehe -12+2\sqrt{26} ki te 10.
x=\frac{-2\sqrt{26}-12}{10}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{26}}{10} ina he tango te ±. Tango 2\sqrt{26} mai i -12.
x=\frac{-\sqrt{26}-6}{5}
Whakawehe -12-2\sqrt{26} ki te 10.
5x^{2}+12x+2=5\left(x-\frac{\sqrt{26}-6}{5}\right)\left(x-\frac{-\sqrt{26}-6}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-6+\sqrt{26}}{5} mō te x_{1} me te \frac{-6-\sqrt{26}}{5} mō te x_{2}.