Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{2}+5x-27-3x^{2}=-13x
Tangohia te 3x^{2} mai i ngā taha e rua.
9x^{2}+5x-27=-13x
Pahekotia te 12x^{2} me -3x^{2}, ka 9x^{2}.
9x^{2}+5x-27+13x=0
Me tāpiri te 13x ki ngā taha e rua.
9x^{2}+18x-27=0
Pahekotia te 5x me 13x, ka 18x.
x^{2}+2x-3=0
Whakawehea ngā taha e rua ki te 9.
a+b=2 ab=1\left(-3\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(3x-3\right)
Tuhia anō te x^{2}+2x-3 hei \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+3=0.
12x^{2}+5x-27-3x^{2}=-13x
Tangohia te 3x^{2} mai i ngā taha e rua.
9x^{2}+5x-27=-13x
Pahekotia te 12x^{2} me -3x^{2}, ka 9x^{2}.
9x^{2}+5x-27+13x=0
Me tāpiri te 13x ki ngā taha e rua.
9x^{2}+18x-27=0
Pahekotia te 5x me 13x, ka 18x.
x=\frac{-18±\sqrt{18^{2}-4\times 9\left(-27\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 18 mō b, me -27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 9\left(-27\right)}}{2\times 9}
Pūrua 18.
x=\frac{-18±\sqrt{324-36\left(-27\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-18±\sqrt{324+972}}{2\times 9}
Whakareatia -36 ki te -27.
x=\frac{-18±\sqrt{1296}}{2\times 9}
Tāpiri 324 ki te 972.
x=\frac{-18±36}{2\times 9}
Tuhia te pūtakerua o te 1296.
x=\frac{-18±36}{18}
Whakareatia 2 ki te 9.
x=\frac{18}{18}
Nā, me whakaoti te whārite x=\frac{-18±36}{18} ina he tāpiri te ±. Tāpiri -18 ki te 36.
x=1
Whakawehe 18 ki te 18.
x=-\frac{54}{18}
Nā, me whakaoti te whārite x=\frac{-18±36}{18} ina he tango te ±. Tango 36 mai i -18.
x=-3
Whakawehe -54 ki te 18.
x=1 x=-3
Kua oti te whārite te whakatau.
12x^{2}+5x-27-3x^{2}=-13x
Tangohia te 3x^{2} mai i ngā taha e rua.
9x^{2}+5x-27=-13x
Pahekotia te 12x^{2} me -3x^{2}, ka 9x^{2}.
9x^{2}+5x-27+13x=0
Me tāpiri te 13x ki ngā taha e rua.
9x^{2}+18x-27=0
Pahekotia te 5x me 13x, ka 18x.
9x^{2}+18x=27
Me tāpiri te 27 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{9x^{2}+18x}{9}=\frac{27}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{18}{9}x=\frac{27}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+2x=\frac{27}{9}
Whakawehe 18 ki te 9.
x^{2}+2x=3
Whakawehe 27 ki te 9.
x^{2}+2x+1^{2}=3+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=3+1
Pūrua 1.
x^{2}+2x+1=4
Tāpiri 3 ki te 1.
\left(x+1\right)^{2}=4
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=2 x+1=-2
Whakarūnātia.
x=1 x=-3
Me tango 1 mai i ngā taha e rua o te whārite.