Tauwehe
3\left(k-1\right)\left(4k+9\right)
Aromātai
3\left(k-1\right)\left(4k+9\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(4k^{2}+5k-9\right)
Tauwehea te 3.
a+b=5 ab=4\left(-9\right)=-36
Whakaarohia te 4k^{2}+5k-9. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4k^{2}+ak+bk-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,36 -2,18 -3,12 -4,9 -6,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=9
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(4k^{2}-4k\right)+\left(9k-9\right)
Tuhia anō te 4k^{2}+5k-9 hei \left(4k^{2}-4k\right)+\left(9k-9\right).
4k\left(k-1\right)+9\left(k-1\right)
Tauwehea te 4k i te tuatahi me te 9 i te rōpū tuarua.
\left(k-1\right)\left(4k+9\right)
Whakatauwehea atu te kīanga pātahi k-1 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(k-1\right)\left(4k+9\right)
Me tuhi anō te kīanga whakatauwehe katoa.
12k^{2}+15k-27=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-15±\sqrt{15^{2}-4\times 12\left(-27\right)}}{2\times 12}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-15±\sqrt{225-4\times 12\left(-27\right)}}{2\times 12}
Pūrua 15.
k=\frac{-15±\sqrt{225-48\left(-27\right)}}{2\times 12}
Whakareatia -4 ki te 12.
k=\frac{-15±\sqrt{225+1296}}{2\times 12}
Whakareatia -48 ki te -27.
k=\frac{-15±\sqrt{1521}}{2\times 12}
Tāpiri 225 ki te 1296.
k=\frac{-15±39}{2\times 12}
Tuhia te pūtakerua o te 1521.
k=\frac{-15±39}{24}
Whakareatia 2 ki te 12.
k=\frac{24}{24}
Nā, me whakaoti te whārite k=\frac{-15±39}{24} ina he tāpiri te ±. Tāpiri -15 ki te 39.
k=1
Whakawehe 24 ki te 24.
k=-\frac{54}{24}
Nā, me whakaoti te whārite k=\frac{-15±39}{24} ina he tango te ±. Tango 39 mai i -15.
k=-\frac{9}{4}
Whakahekea te hautanga \frac{-54}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
12k^{2}+15k-27=12\left(k-1\right)\left(k-\left(-\frac{9}{4}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -\frac{9}{4} mō te x_{2}.
12k^{2}+15k-27=12\left(k-1\right)\left(k+\frac{9}{4}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
12k^{2}+15k-27=12\left(k-1\right)\times \frac{4k+9}{4}
Tāpiri \frac{9}{4} ki te k mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12k^{2}+15k-27=3\left(k-1\right)\left(4k+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 12 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}