Tauwehe
\left(4c-3\right)\left(3c+5\right)
Aromātai
\left(4c-3\right)\left(3c+5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=11 ab=12\left(-15\right)=-180
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 12c^{2}+ac+bc-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Tātaihia te tapeke mō ia takirua.
a=-9 b=20
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(12c^{2}-9c\right)+\left(20c-15\right)
Tuhia anō te 12c^{2}+11c-15 hei \left(12c^{2}-9c\right)+\left(20c-15\right).
3c\left(4c-3\right)+5\left(4c-3\right)
Tauwehea te 3c i te tuatahi me te 5 i te rōpū tuarua.
\left(4c-3\right)\left(3c+5\right)
Whakatauwehea atu te kīanga pātahi 4c-3 mā te whakamahi i te āhuatanga tātai tohatoha.
12c^{2}+11c-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-11±\sqrt{11^{2}-4\times 12\left(-15\right)}}{2\times 12}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-11±\sqrt{121-4\times 12\left(-15\right)}}{2\times 12}
Pūrua 11.
c=\frac{-11±\sqrt{121-48\left(-15\right)}}{2\times 12}
Whakareatia -4 ki te 12.
c=\frac{-11±\sqrt{121+720}}{2\times 12}
Whakareatia -48 ki te -15.
c=\frac{-11±\sqrt{841}}{2\times 12}
Tāpiri 121 ki te 720.
c=\frac{-11±29}{2\times 12}
Tuhia te pūtakerua o te 841.
c=\frac{-11±29}{24}
Whakareatia 2 ki te 12.
c=\frac{18}{24}
Nā, me whakaoti te whārite c=\frac{-11±29}{24} ina he tāpiri te ±. Tāpiri -11 ki te 29.
c=\frac{3}{4}
Whakahekea te hautanga \frac{18}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
c=-\frac{40}{24}
Nā, me whakaoti te whārite c=\frac{-11±29}{24} ina he tango te ±. Tango 29 mai i -11.
c=-\frac{5}{3}
Whakahekea te hautanga \frac{-40}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
12c^{2}+11c-15=12\left(c-\frac{3}{4}\right)\left(c-\left(-\frac{5}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{4} mō te x_{1} me te -\frac{5}{3} mō te x_{2}.
12c^{2}+11c-15=12\left(c-\frac{3}{4}\right)\left(c+\frac{5}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
12c^{2}+11c-15=12\times \frac{4c-3}{4}\left(c+\frac{5}{3}\right)
Tango \frac{3}{4} mai i c mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12c^{2}+11c-15=12\times \frac{4c-3}{4}\times \frac{3c+5}{3}
Tāpiri \frac{5}{3} ki te c mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12c^{2}+11c-15=12\times \frac{\left(4c-3\right)\left(3c+5\right)}{4\times 3}
Whakareatia \frac{4c-3}{4} ki te \frac{3c+5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12c^{2}+11c-15=12\times \frac{\left(4c-3\right)\left(3c+5\right)}{12}
Whakareatia 4 ki te 3.
12c^{2}+11c-15=\left(4c-3\right)\left(3c+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te 12 me te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}