Whakaoti mō b
b=\frac{1+\sqrt{15551}i}{24}\approx 0.041666667+5.195985363i
b=\frac{-\sqrt{15551}i+1}{24}\approx 0.041666667-5.195985363i
Tohaina
Kua tāruatia ki te papatopenga
12b^{2}-b+324=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-1\right)±\sqrt{1-4\times 12\times 324}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, -1 mō b, me 324 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-1\right)±\sqrt{1-48\times 324}}{2\times 12}
Whakareatia -4 ki te 12.
b=\frac{-\left(-1\right)±\sqrt{1-15552}}{2\times 12}
Whakareatia -48 ki te 324.
b=\frac{-\left(-1\right)±\sqrt{-15551}}{2\times 12}
Tāpiri 1 ki te -15552.
b=\frac{-\left(-1\right)±\sqrt{15551}i}{2\times 12}
Tuhia te pūtakerua o te -15551.
b=\frac{1±\sqrt{15551}i}{2\times 12}
Ko te tauaro o -1 ko 1.
b=\frac{1±\sqrt{15551}i}{24}
Whakareatia 2 ki te 12.
b=\frac{1+\sqrt{15551}i}{24}
Nā, me whakaoti te whārite b=\frac{1±\sqrt{15551}i}{24} ina he tāpiri te ±. Tāpiri 1 ki te i\sqrt{15551}.
b=\frac{-\sqrt{15551}i+1}{24}
Nā, me whakaoti te whārite b=\frac{1±\sqrt{15551}i}{24} ina he tango te ±. Tango i\sqrt{15551} mai i 1.
b=\frac{1+\sqrt{15551}i}{24} b=\frac{-\sqrt{15551}i+1}{24}
Kua oti te whārite te whakatau.
12b^{2}-b+324=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
12b^{2}-b+324-324=-324
Me tango 324 mai i ngā taha e rua o te whārite.
12b^{2}-b=-324
Mā te tango i te 324 i a ia ake anō ka toe ko te 0.
\frac{12b^{2}-b}{12}=-\frac{324}{12}
Whakawehea ngā taha e rua ki te 12.
b^{2}-\frac{1}{12}b=-\frac{324}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
b^{2}-\frac{1}{12}b=-27
Whakawehe -324 ki te 12.
b^{2}-\frac{1}{12}b+\left(-\frac{1}{24}\right)^{2}=-27+\left(-\frac{1}{24}\right)^{2}
Whakawehea te -\frac{1}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{24}. Nā, tāpiria te pūrua o te -\frac{1}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-\frac{1}{12}b+\frac{1}{576}=-27+\frac{1}{576}
Pūruatia -\frac{1}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}-\frac{1}{12}b+\frac{1}{576}=-\frac{15551}{576}
Tāpiri -27 ki te \frac{1}{576}.
\left(b-\frac{1}{24}\right)^{2}=-\frac{15551}{576}
Tauwehea b^{2}-\frac{1}{12}b+\frac{1}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{1}{24}\right)^{2}}=\sqrt{-\frac{15551}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-\frac{1}{24}=\frac{\sqrt{15551}i}{24} b-\frac{1}{24}=-\frac{\sqrt{15551}i}{24}
Whakarūnātia.
b=\frac{1+\sqrt{15551}i}{24} b=\frac{-\sqrt{15551}i+1}{24}
Me tāpiri \frac{1}{24} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}