Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12b^{2}-36b=17
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
12b^{2}-36b-17=17-17
Me tango 17 mai i ngā taha e rua o te whārite.
12b^{2}-36b-17=0
Mā te tango i te 17 i a ia ake anō ka toe ko te 0.
b=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 12\left(-17\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, -36 mō b, me -17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-36\right)±\sqrt{1296-4\times 12\left(-17\right)}}{2\times 12}
Pūrua -36.
b=\frac{-\left(-36\right)±\sqrt{1296-48\left(-17\right)}}{2\times 12}
Whakareatia -4 ki te 12.
b=\frac{-\left(-36\right)±\sqrt{1296+816}}{2\times 12}
Whakareatia -48 ki te -17.
b=\frac{-\left(-36\right)±\sqrt{2112}}{2\times 12}
Tāpiri 1296 ki te 816.
b=\frac{-\left(-36\right)±8\sqrt{33}}{2\times 12}
Tuhia te pūtakerua o te 2112.
b=\frac{36±8\sqrt{33}}{2\times 12}
Ko te tauaro o -36 ko 36.
b=\frac{36±8\sqrt{33}}{24}
Whakareatia 2 ki te 12.
b=\frac{8\sqrt{33}+36}{24}
Nā, me whakaoti te whārite b=\frac{36±8\sqrt{33}}{24} ina he tāpiri te ±. Tāpiri 36 ki te 8\sqrt{33}.
b=\frac{\sqrt{33}}{3}+\frac{3}{2}
Whakawehe 36+8\sqrt{33} ki te 24.
b=\frac{36-8\sqrt{33}}{24}
Nā, me whakaoti te whārite b=\frac{36±8\sqrt{33}}{24} ina he tango te ±. Tango 8\sqrt{33} mai i 36.
b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
Whakawehe 36-8\sqrt{33} ki te 24.
b=\frac{\sqrt{33}}{3}+\frac{3}{2} b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
Kua oti te whārite te whakatau.
12b^{2}-36b=17
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{12b^{2}-36b}{12}=\frac{17}{12}
Whakawehea ngā taha e rua ki te 12.
b^{2}+\left(-\frac{36}{12}\right)b=\frac{17}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
b^{2}-3b=\frac{17}{12}
Whakawehe -36 ki te 12.
b^{2}-3b+\left(-\frac{3}{2}\right)^{2}=\frac{17}{12}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-3b+\frac{9}{4}=\frac{17}{12}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}-3b+\frac{9}{4}=\frac{11}{3}
Tāpiri \frac{17}{12} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(b-\frac{3}{2}\right)^{2}=\frac{11}{3}
Tauwehea b^{2}-3b+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-\frac{3}{2}=\frac{\sqrt{33}}{3} b-\frac{3}{2}=-\frac{\sqrt{33}}{3}
Whakarūnātia.
b=\frac{\sqrt{33}}{3}+\frac{3}{2} b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.