Tauwehe
2a\left(3a-5\right)\left(2a+7\right)
Aromātai
2a\left(3a-5\right)\left(2a+7\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(6a^{3}+11a^{2}-35a\right)
Tauwehea te 2.
a\left(6a^{2}+11a-35\right)
Whakaarohia te 6a^{3}+11a^{2}-35a. Tauwehea te a.
p+q=11 pq=6\left(-35\right)=-210
Whakaarohia te 6a^{2}+11a-35. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6a^{2}+pa+qa-35. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōrunga te p+q, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Tātaihia te tapeke mō ia takirua.
p=-10 q=21
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(6a^{2}-10a\right)+\left(21a-35\right)
Tuhia anō te 6a^{2}+11a-35 hei \left(6a^{2}-10a\right)+\left(21a-35\right).
2a\left(3a-5\right)+7\left(3a-5\right)
Tauwehea te 2a i te tuatahi me te 7 i te rōpū tuarua.
\left(3a-5\right)\left(2a+7\right)
Whakatauwehea atu te kīanga pātahi 3a-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2a\left(3a-5\right)\left(2a+7\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}