Aromātai
14a-1
Whakaroha
14a-1
Tohaina
Kua tāruatia ki te papatopenga
12a+3a-6-\left(a-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a-2.
15a-6-\left(a-5\right)
Pahekotia te 12a me 3a, ka 15a.
15a-6-a-\left(-5\right)
Hei kimi i te tauaro o a-5, kimihia te tauaro o ia taurangi.
15a-6-a+5
Ko te tauaro o -5 ko 5.
14a-6+5
Pahekotia te 15a me -a, ka 14a.
14a-1
Tāpirihia te -6 ki te 5, ka -1.
12a+3a-6-\left(a-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a-2.
15a-6-\left(a-5\right)
Pahekotia te 12a me 3a, ka 15a.
15a-6-a-\left(-5\right)
Hei kimi i te tauaro o a-5, kimihia te tauaro o ia taurangi.
15a-6-a+5
Ko te tauaro o -5 ko 5.
14a-6+5
Pahekotia te 15a me -a, ka 14a.
14a-1
Tāpirihia te -6 ki te 5, ka -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}