Tauwehe
\left(3-y\right)\left(y+4\right)
Aromātai
\left(3-y\right)\left(y+4\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
-y^{2}-y+12
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=-12=-12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -y^{2}+ay+by+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=3 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(-y^{2}+3y\right)+\left(-4y+12\right)
Tuhia anō te -y^{2}-y+12 hei \left(-y^{2}+3y\right)+\left(-4y+12\right).
y\left(-y+3\right)+4\left(-y+3\right)
Tauwehea te y i te tuatahi me te 4 i te rōpū tuarua.
\left(-y+3\right)\left(y+4\right)
Whakatauwehea atu te kīanga pātahi -y+3 mā te whakamahi i te āhuatanga tātai tohatoha.
-y^{2}-y+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 12}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-1\right)±\sqrt{1+4\times 12}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{-\left(-1\right)±\sqrt{1+48}}{2\left(-1\right)}
Whakareatia 4 ki te 12.
y=\frac{-\left(-1\right)±\sqrt{49}}{2\left(-1\right)}
Tāpiri 1 ki te 48.
y=\frac{-\left(-1\right)±7}{2\left(-1\right)}
Tuhia te pūtakerua o te 49.
y=\frac{1±7}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
y=\frac{1±7}{-2}
Whakareatia 2 ki te -1.
y=\frac{8}{-2}
Nā, me whakaoti te whārite y=\frac{1±7}{-2} ina he tāpiri te ±. Tāpiri 1 ki te 7.
y=-4
Whakawehe 8 ki te -2.
y=-\frac{6}{-2}
Nā, me whakaoti te whārite y=\frac{1±7}{-2} ina he tango te ±. Tango 7 mai i 1.
y=3
Whakawehe -6 ki te -2.
-y^{2}-y+12=-\left(y-\left(-4\right)\right)\left(y-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -4 mō te x_{1} me te 3 mō te x_{2}.
-y^{2}-y+12=-\left(y+4\right)\left(y-3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}