Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-8n+12
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=1\times 12=12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei n^{2}+an+bn+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(n^{2}-6n\right)+\left(-2n+12\right)
Tuhia anō te n^{2}-8n+12 hei \left(n^{2}-6n\right)+\left(-2n+12\right).
n\left(n-6\right)-2\left(n-6\right)
Tauwehea te n i te tuatahi me te -2 i te rōpū tuarua.
\left(n-6\right)\left(n-2\right)
Whakatauwehea atu te kīanga pātahi n-6 mā te whakamahi i te āhuatanga tātai tohatoha.
n^{2}-8n+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
Pūrua -8.
n=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
Whakareatia -4 ki te 12.
n=\frac{-\left(-8\right)±\sqrt{16}}{2}
Tāpiri 64 ki te -48.
n=\frac{-\left(-8\right)±4}{2}
Tuhia te pūtakerua o te 16.
n=\frac{8±4}{2}
Ko te tauaro o -8 ko 8.
n=\frac{12}{2}
Nā, me whakaoti te whārite n=\frac{8±4}{2} ina he tāpiri te ±. Tāpiri 8 ki te 4.
n=6
Whakawehe 12 ki te 2.
n=\frac{4}{2}
Nā, me whakaoti te whārite n=\frac{8±4}{2} ina he tango te ±. Tango 4 mai i 8.
n=2
Whakawehe 4 ki te 2.
n^{2}-8n+12=\left(n-6\right)\left(n-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6 mō te x_{1} me te 2 mō te x_{2}.