Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(4-12k+5k^{2}\right)
Tauwehea te 3.
5k^{2}-12k+4
Whakaarohia te 4-12k+5k^{2}. Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-12 ab=5\times 4=20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5k^{2}+ak+bk+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-20 -2,-10 -4,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
-1-20=-21 -2-10=-12 -4-5=-9
Tātaihia te tapeke mō ia takirua.
a=-10 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(5k^{2}-10k\right)+\left(-2k+4\right)
Tuhia anō te 5k^{2}-12k+4 hei \left(5k^{2}-10k\right)+\left(-2k+4\right).
5k\left(k-2\right)-2\left(k-2\right)
Tauwehea te 5k i te tuatahi me te -2 i te rōpū tuarua.
\left(k-2\right)\left(5k-2\right)
Whakatauwehea atu te kīanga pātahi k-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(k-2\right)\left(5k-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
15k^{2}-36k+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 15\times 12}}{2\times 15}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-36\right)±\sqrt{1296-4\times 15\times 12}}{2\times 15}
Pūrua -36.
k=\frac{-\left(-36\right)±\sqrt{1296-60\times 12}}{2\times 15}
Whakareatia -4 ki te 15.
k=\frac{-\left(-36\right)±\sqrt{1296-720}}{2\times 15}
Whakareatia -60 ki te 12.
k=\frac{-\left(-36\right)±\sqrt{576}}{2\times 15}
Tāpiri 1296 ki te -720.
k=\frac{-\left(-36\right)±24}{2\times 15}
Tuhia te pūtakerua o te 576.
k=\frac{36±24}{2\times 15}
Ko te tauaro o -36 ko 36.
k=\frac{36±24}{30}
Whakareatia 2 ki te 15.
k=\frac{60}{30}
Nā, me whakaoti te whārite k=\frac{36±24}{30} ina he tāpiri te ±. Tāpiri 36 ki te 24.
k=2
Whakawehe 60 ki te 30.
k=\frac{12}{30}
Nā, me whakaoti te whārite k=\frac{36±24}{30} ina he tango te ±. Tango 24 mai i 36.
k=\frac{2}{5}
Whakahekea te hautanga \frac{12}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
15k^{2}-36k+12=15\left(k-2\right)\left(k-\frac{2}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te \frac{2}{5} mō te x_{2}.
15k^{2}-36k+12=15\left(k-2\right)\times \frac{5k-2}{5}
Tango \frac{2}{5} mai i k mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15k^{2}-36k+12=3\left(k-2\right)\left(5k-2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 15 me te 5.